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Abstract: We perform a detailed analysis of one-loop corrections to the self-energy of

the (off-shell) gauge bosons in six-dimensional N = 1 supersymmetric gauge theories on

orbifolds. After discussing the Abelian case in the standard Feynman diagram approach,

we extend the analysis to the non-Abelian case by employing the method of an orbifold-

compatible one-loop effective action for a classical background gauge field. We find that

bulk higher derivative and brane-localised gauge kinetic terms are required to cancel one-

loop divergences of the gauge boson self energy. After their renormalisation we study the

momentum dependence of both the higher derivative coupling h(k2) and the effective gauge

coupling geff(k2). For momenta smaller than the compactification scales, we obtain the 4D

logarithmic running of geff(k2), with suppressed power-like corrections, while the higher

derivative coupling is constant. We present in detail the threshold corrections to the low

energy gauge coupling, due to the massive bulk modes. At momentum scales above the

compactification scales, the higher derivative operator becomes important and leads to a

power-like running of geff (k2) with respect to the momentum scale. The coefficient of this

running is at all scales equal to the renormalised coupling of the higher derivative operator

which ensures the quantum consistency of the model. We discuss the relation to the similar

one-loop correction in the heterotic string, to show that the higher derivative operators are

relevant in that case too, since the field theory limit of the one-loop string correction does

not commute with the infrared regularisation of the (on-shell) string result.
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1. Introduction

In recent years, the study of additional compact space dimensions in an effective field the-

ory framework [1] has been popular in the particle physics community, since this provides

new possibilities for searching for physics beyond the Standard Model. Although string

theory may present a better set-up for such studies, effective field theories also allow a

fully consistent investigation of quantum effects associated with (large) extra dimensions,

and may even capture effects not seen by the on-shell string. Since no additional space

dimensions are observed at low energies, these have to be compactified at sufficiently high

scales1. In field theory approaches only simple covering spaces are usually considered, such

as S1, T 2 . . ., sufficient however to capture the main effects investigated. To obtain 4D

chiral fermions from bulk fields discrete symmetries must act (non-freely) upon the extra

dimensions, resulting in orbifolds such as S1/
�

2 or T 2/
�

N (N = 2, 3, 4, 6). These orbifolds

have fixed points, invariant under subgroups of the discrete group action. Since the bulk

fields satisfy boundary conditions at the orbifold fixed points, momentum conservation does

not hold in the extra dimensions. Ultimately, brane-localised (either 4D or higher deriva-

tive) interactions are required as counterterms [3 – 7], to ensure the quantum consistency

of the models. New bulk interactions, in addition to the original ones, are also generated

dynamically [7 – 12] as higher dimensional (derivative) terms.

In this paper we consider the one-loop correction to the self-energy of gauge bosons in

6D N = 1 supersymmetric Abelian and non-Abelian gauge theories coupled to hypermulti-

plets on the T 2/
�

2 orbifold, within the component field formulation. We find that one-loop

divergences are generated which require the addition of new counterterms. These involve

new, brane-localised 4D interactions as well as higher derivative, bulk gauge interactions,

not present in the original action. We provide a careful study of the role of these operators

in the running of the gauge coupling at high and low momentum scales. We also discuss

the link between these one-loop corrections and those in string theory. These are the main

purposes of this paper. Recent work on this topic can be found in [9, 10] in the superfield

formalism (for related studies see also [13]).

In the Abelian case, we use the Feynman diagram approach to consider bulk scalar and

fermion contributions to the self-energy of the gauge bosons. We find that the fermions

give rise to a bulk divergence only, requiring a bulk higher derivative counterterm. At

the technical level, the origin of this divergence is the presence of infinite double sums

over the modes and a re-summation of their individual divergent contributions [5 – 7, 9 –

11, 14]. In contrast, bulk complex scalars bring in both bulk and brane corrections. Their

divergent part must be cancelled by bulk higher derivative and brane-localised gauge kinetic

counterterms, respectively. Both fermionic and bosonic contributions also contain finite

Lorentz violating mass terms in the bulk. For a hypermultiplet there are neither brane

contributions nor bulk Lorentz violating mass terms. Thus, even after compactification,

the Lorentz invariance in these mass corrections is protected by the initial supersymmetry.

Nonetheless, one still needs a bulk higher derivative counterterm, which reflects the non-

renormalisable nature of the initial, higher dimensional field theory.

1Non-compact, infinite extra dimensions are also possible [2].
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The above analysis is extended to the non-Abelian case by employing a background field

method which is made consistent with the orbifold boundary conditions. This formalism

can be generalised to other orbifold actions, such as Wilson lines. The results show that a

hypermultiplet generates only a bulk loop correction, just like in the Abelian case, while a

vector multiplet generates both bulk and brane-localised contributions. These contributions

contain divergent terms which are cancelled by bulk higher derivative and brane-localised

gauge kinetic counterterms. After the renormalisation of these operators, the running of the

one-loop effective coupling geff(k2), which is the coupling of the zero mode gauge bosons,

is controlled by finite terms coming from both bulk and branes. This will be discussed in

detail.

In the limit of external momenta k2 smaller than the compactification scale(s), the

higher derivative gauge kinetic term is suppressed. In this case, after considering both

bulk and brane one-loop effects, we show that the effective gauge coupling has a 4D log-

arithmic running with respect to the momentum k2, with the 4D N = 1 beta function.

This is an interesting result and a consistency check of our calculation. The logarithmic

running in momentum originates from both bulk and brane contributions. We also estab-

lish a relation between the high scale physics (gtree) and geff(k2 ¿ 1/R2
5,6), which involves

re-summing threshold corrections due to infinitely many massive Kaluza-Klein modes. We

provide detailed expressions of these corrections including finite terms. This relation is

little dependent on the role of the higher derivative operator, strongly suppressed at such

low momentum scales. The running of the effective coupling with respect to k2 can be ex-

tended to larger values of k2, closer to compactification scales (k2 ∼ 1/R2
5,6), to reach the

regime of dimensional cross-over [15]. In this case the higher derivative operator brings in

an important contribution to the effective gauge coupling. After its renormalisation, there

are non-negligible power-like corrections in momentum scale to geff(k2). The coefficient of

the power-like running is the renormalised coupling h(k2) of the higher derivative operator,

which below the compactification scales is constant while far above them it runs logarithmi-

cally with respect to the momentum scale. At even higher momentum scales k2 À 1/R2
5,6

we show that geff (k2) has a power-like running with respect to the high momentum scale,

with a coefficient equal to the renormalised coupling of the higher derivative operator.

The link of these corrections to similar results from string theory is addressed. We

discuss the relation of our result to string corrections in the type I strings [16] and heterotic

toroidal orbifolds [17, 18] with N = 2 sub-sectors. Although the on-shell (heterotic)

string calculation to the gauge boson self-energy misses contributions associated with higher

derivative operators, we show that there are remnant effects of their presence, even in the

(on-shell) string result. These effects are related to the fact that the infrared regularisation

of the (heterotic) string loop corrections and their α′ → 0 limit do not commute, leaving

a troublesome UV-IR mixing in the effective field theory regime of the (heterotic) string

(α′ → 0). This stresses the importance of investigating the role of such operators in string

theory, too.

The results for the self-energy of the gauge bosons in our component field formulation

are fully consistent with those obtained in the superfield formulation. Nevertheless, the

gauge fixing term and the associated ghost Lagrangian considered are not invariant under

– 3 –
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the original supersymmetry transformation. This is related to the well-known fact that

the Wess-Zumino gauge is not consistent with a super-covariant gauge fixing [19]. This

problem is very common in similar works, and becomes manifest in the fact that the

anomalous dimensions of scalar and fermion matter fields in a chiral multiplet are not

equal at one-loop level [20]. However, for our case of the self-energy of the gauge bosons,

additional auxiliary multiplets required by a manifestly supersymmetric quantisation will

not change the result, as discussed for the holomorphic anomaly to the gauge coupling in

4D supersymmetric gauge theory [21].

The paper is organised as follows. We start with a 6D N = 1 supersymmetric Abelian

gauge theory where the one-loop correction to the gauge bosons is computed. Then we

employ the higher dimensional background field method to find the one-loop effective action

of non-Abelian gauge theories and apply this formalism to T 2/
�

2, using orbifold-compatible

functional differentiations. Finally we discuss the running of the effective gauge coupling.

Technical details of our calculations are given in the appendices.

2. One-loop vacuum polarisation to U(1) gauge bosons on orbifolds

We consider the one-loop vacuum polarisation in a 6D N = 1 supersymmetric Abelian

gauge theory coupled to hypermultiplets. The two extra dimensions are denoted by the

complex coordinate z = x5 + ix6, and are compactified on the orbifold T 2/
�

2 with the two

radii R5 and R6. The torus is modded out by the
�

2 reflection, which identifies coordinates

of extra dimensions under z → −z. Under this
�

2 action, there appear four fixed points

which transform into themselves.

In a 6D N = 1 supersymmetric gauge theory, a vector multiplet is composed of gauge

bosons AM and (right-handed) symplectic Majorana gauginos λ while a hypermultiplet

is composed of two complex hyperscalars φ± with opposite charges and a (left-handed)

hyperino ψ. The supersymmetric action is given in component fields2 by [22]

S = Svector + Shyper

with

Svector =
1

2

∫
d6X

[
− 1

2
FMNFMN +λ̄iγM∂Mλ+λ̄ciγM∂Mλc+

∣∣D1 + iD2
∣∣2+(D3)2

]
,(2.1)

Shyper =

∫
d6X

[∑

±

|DMφ±|2 + ψ̄iγ̄MDMψ +
√

2g
(
ψ̄λφ∗

− + ψ̄λcφ+ + c.c.
)

−g
(
(D1 + iD2)φ+φ− + c.c

)
+ gD3

(
φ∗

+φ+ − φ∗
−φ−

)]
, (2.2)

where λc = C5λ̄
T is the five-dimensional charge conjugate of λ, DMφ± = (∂M ∓ igAM )φ±,

and DMψ = (∂M − igAM )ψ. Details on our conventions are given in appendix A.

2We also included the auxiliary fields ~D = (D1, D2, D3) for completeness. We have written gaugino and

hyperino in 4D Dirac representations.
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ψ

Aµ Aν

Figure 1: The Feynman diagram with a bulk fermion ψ contributing to Πµν at one-loop order.

To promote the
�

2-symmetry of the orbifold to a symmetry of our theory, we have to

specify the
�

2 parities of the bulk fields. These parities are given by

Aµ(x,−z) = Aµ(x, z), A5,6(x,−z) = −A5,6(x, z), λ(x,−z) = iγ5λ(x, z),

φ±(x,−z) = ±η φ±(x, z), ψ(x,−z) = iη γ5ψ(x, z) (2.3)

where η can be chosen +1 or −1. Within this framework, we evaluate the contributions to

the 4D one-loop self-energy of the gauge bosons induced by bulk fields running in the loop.

2.1 A bulk fermion contribution

We consider the one-loop contribution of a 6D left-handed bulk fermion to the self-energy

of the 4D components of the gauge field. The Feynman diagram given in figure 1 can be

evaluated as

Πf
µν(k,~k,~k′) = g2µ4−d

∑

~p,~p′

∫
ddp

(2π)d
Tr

{
γµ

i

2

[
δ~p,~p′

p/ + γ5p5 + p6
− η

δ~p,−~p′

p/ + γ5p5 + p6
iγ5

]
γν

× i

2

[
δ~k′+~p′,~k+~p

p/ + k/ + γ5(k
′
5 + p′5) + k′

6 + p′6
− η

δ~k′+~p′,−~k−~p

p/ + k/ + γ5(k
′
5 + p′5) + k′

6 + p′6
iγ5

]}
(2.4)

where we used eq. (B.4) for the fermion propagator in the loop. Here a sum over discrete

momenta ~p is to be understood as a double sum over integers n1,2 such that for an arbitrary

function f

∑

~p

f(~p) = σ
∑

n1,2∈Z

f(n1/R1, n2/R6), σ ≡ [(2π)2R5R6]
−1 (2.5)

where ~p ≡ (p5, p6) = (n1/R5, n2/R6). Moreover, we use the Kronecker delta symbol for

discrete momenta, whose action and normalisation are

∑

~p

δ~p,~p′f(~p) = f(~p′), δ~p,~p′ ≡ (2π)2δp5,p′5
δp6,p′6

=
1

σ
δn1,n′

1
δn2,n′

2
(2.6)

The integral in (2.4) is continued to d ≡ 4 − ε dimensions, with ε → 0 after performing

the double sum; µ is the finite scale of the DR scheme. Note that both the 4D integral

– 5 –
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and the double sum over the momenta are regularised by the same regulator ε. That is, ε

acts essentially as a 6D regulator, as it should be the case. These conventions will be used

throughout the paper. After some standard calculations, we rewrite expression (2.4) as

Πf
µν = −1

4
g2

∑

~p,~p′

∫
ddp

(2π)d
µ4−d

(p2 − p2
5)[(p + k)2 − (~p′ + ~k′)2]

{
π(1)

µν (~p′, ~k′)δ~k′,~k

+π(1)
µν (−~p′,−~k′)δ~k′,−~k

− ηπ(2)
µν (~p′, ~k′)δ

−2~p′,~k′−~k
− ηπ(2)

µν (−~p′,−~k′)δ
−2~p′,~k′+~k

}
(2.7)

with

π(1)
µν (~p′, ~k′) = 4[2pµpν + pµkν + pνkµ + gµν(−p(p + k) + ~p′ · (~p′ + ~k′))],

π(2)
µν (~p′, ~k′) = −4ipρkσεµρνσ. (2.8)

Here we note that terms proportional to δ~k,~k′ or δ~k,−~k′ conserve the external extra mo-

mentum |~k|. Therefore these terms correspond to bulk terms. On the contrary, terms

multiplied by δ
−2~p′,~k′−~k or δ

−2~p′,~k′+~k change the external discrete momentum in the com-

pact dimensions, and therefore correspond to brane-localised terms [3]. These momentum

non-conserving terms are due to the breaking of translational invariance along the extra

dimensions in the presence of orbifold fixed points. Although the momentum is conserved

at each vertex in Feynman diagrams, extra momenta of ingoing and outgoing gauge bosons

can be different due to the momentum non-conserving part δ~p,−~p′ in the propagator of a

bulk field running in loops.

After performing the 4D momentum integral, the contribution involving π
(2)
µν vanishes.

Therefore no correction to the localised gauge coupling is generated by the bulk fermion.

Finally, after introducing a Feynman parameter and shifting the integration momentum as

in appendix C.1, we obtain the correction

Πf
µν [k,~k,~k′] = −2 g2 δ~k,~k′ µ

4−d
∑

~p′

∫ 1

0
dx

∫
ddp

(2π)d
1

(p2 − ∆)2

×
[
2x(1 − x)[(k2 − ~k′2)gµν − kµkν ] + (1 − 2x)~k′ · (~p′ + x~k′)gµν

]
(2.9)

with ∆ ≡ −x(1−x)(k2−~k′2)+(~p′+x~k′)2. The first part of this result contains the familiar

tensor structure coming from 6D gauge and Lorentz invariance and can be factorised out

of the momentum integration and the Kaluza-Klein summation. The second part of (2.9)

however corresponds to a Lorentz violating mass term, since 6D Lorentz invariance is

broken by the compactification. This term leads to radiative corrections to the nonzero

Kaluza-Klein masses [4].

The current form of the result in eq. (2.9) is all we need for our purpose of investigating

the one-loop corrections to gauge couplings in supersymmetric models. It is nevertheless

important to simplify eq. (2.9) to identify its divergences3. After some algebra we find, in

3The non-zero external momenta (k,~k,~k′) in the Green functions ensure infrared-convergent integrals.

– 6 –
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Euclidean space4

Πf
µν [k,~k,~k′] = −2g2iπ2

(2π)d
σ δ~k,~k′

[
[(k2 + ~k′2)δµν + kµkν ] Πf

0 − δµν Πf
1

]
, (2.10)

Πf
0 ≡

∫ 1

0
dx ρ0(x)J0[x(1 − x)(k2 + ~k

′2);xk′
5R5, xk′

6R6], (2.11)

Πf
1 ≡ k′

5

R5

∫ 1

0
dx ρ1(x)J1[x(1 − x)(k2 + ~k

′2);xk′
5R5, xk′

6R6]+
(
k′
5↔k′

6;R5↔R6

)
, (2.12)

with ρ0(x) ≡ 2x(1 − x) and ρ1(x) ≡ (1 − 2x). The functions J0,1[c; c1, c2] are defined and

studied in detail in appendix D, eqs. (D.1), (D.20) to (D.24) and they can be integrated

over x, yielding compact final expressions. Since these expressions are rather long, we do

not present them here. However, it is important for our purpose to notice that J0 has a

pole, while J1 is actually finite. Using this information, the pole structure in ε of the final

result is obtained

Πf
0 =

π

15
(k2 + ~k

′2)R5R6

[−2

ε

]
+ O(ε0), Πf

1 = O(ε0) (2.13)

with momentum again in Euclidean space. The consequence of this 6D divergence in Πf
0

and thus in Πf
µν is that a higher derivative counterterm is necessary. This is a dimension-

six bulk counterterm, and its structure would be, in a non-susy case, R5R6F
MN

¤6FMN .

Although each bulk mode brings a pole for the usual gauge kinetic term, the resummation of

infinitely many bulk mode contributions leads only to a pole for the higher derivative term5.

A similar result has been obtained in a 6D Abelian gauge theory without compactification

in [8]. We postpone a further discussion on such operators to sections 2.3 and 3 where

their role will be investigated in detail.

2.2 A bulk scalar contribution

Now we consider the one-loop contribution of a complex bulk scalar with parity η to the

self-energy of the gauge boson. In this case, there are two Feynman diagrams (see figure 2)

contributing to the one-loop vacuum polarisation.

Then the one-loop scalar contribution is

Πs
µν,±[k,~k,~k′] = Π(1)

µν [k,~k,~k′] + Π(2)
µν [k,~k,~k′] (2.14)

4Denoting by ∆E the Euclidean form of ∆ we used that:
R

ddp (p2 − ∆)−2 = iπ2
R

∞

0
dt t1−d/2 e−π t ∆E .

Unless stated otherwise, our formulae are always written using the Minkowskian metric; the distinction is

also obvious by the presence of either gµν or δµν .
5As will be discussed in detail in section 5, in a regularisation scheme with a momentum cutoff, note

that there is no logarithmically divergent correction to the F MNFMN operator and this is consistent with

the absence of a 1/ε pole to this operator in DR. In such cutoff regularisation, however, there exists a

quadratically divergent correction to the F MNFMN operator (unlike in the 4D gauge theory), discussed in

section 5.

– 7 –
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φ±

Aµ Aν +

φ±

Aµ Aν

Figure 2: The Feynman diagrams with the bulk scalar φ contributing to Πµν at one-loop order.

with

Π(1)
µν [k,~k,~k′] = (−ig)2 µ4−d

∑

~p,~p′

∫
ddp

(2π)d
(2p + k)µ(2p + k)ν

i

2

[
δ~p,~p′ ± ηδ~p,−~p′

p2 − ~p2

]

× i

2

[
δ
~p′+~k′,~p+~k

± ηδ
~p′+~k′,−~p−~k

(p + k)2 − (~p′ + ~k′)2

]
, (2.15)

Π(2)
µν [k,~k,~k′] = (2ig2) gµν µ4−d

∑

~p,~p′=~p+~k−~k′

∫
ddp

(2π)d
i

2

[
δ~p,~p′ ± ηδ~p,−~p′

p2 − ~p2

]
(2.16)

where we used eq. (B.7) for the scalar propagator in the loop. After re-arranging the result,

we obtain the one-loop vacuum polarisation as

Πs
µν,±[k,~k,~k′] = −g2

2
µ4−d

∑

~p′

∫
ddp

(2π)d

δ~k,~k′ ± ηδ
−2~p′,~k′−~k

(p2 − (~p′)2)[(p + k)2 − (~p′ + ~k′)2]

×
{
− (2p + k)µ(2p + k)ν + 2gµν

[
(p + k)2 − (~p′ + ~k′)2

]}

≡ Πbulk
µν [k,~k,~k′] ± ηΠbrane

µν [k,~k,~k′] (2.17)

with the bulk and brane terms easily identified by whether they do or do not conserve the

discrete momenta associated with the two compact dimensions. After using a Feynman

parameter and a shift of the integration momentum we obtain the bulk correction, where

a 6D Lorentz violating mass term is present again, due to compactification:

Πbulk
µν [k,~k,~k′] = −g2

2
δ~k,~k′ µ

4−d
∑

~p′

∫ 1

0
dx

∫
ddp

(2π)d
1

(p2 − ∆)2

×
[
(1 − 2x)2[(k2 − ~k′2)gµν − kµkν ] + 2(2x − 1)~k′ · (~p′ + x~k′)gµν

]
. (2.18)

As in the fermionic case, the form of the result in (2.18) is all we need for our purpose of

investigating one-loop corrections to the gauge couplings in supersymmetric models. This

result can however be evaluated explicitly as done in the fermionic case, to identify its

– 8 –
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divergences and finite parts6. One finds, using an Euclidean metric

Πbulk
µν [k,~k,~k′] = −g2

2

iπ2

(2π)d
σ δ~k,~k′

[
[(k2 + ~k′2)δµν + kµkν ] Πbulk

0 − δµν Πbulk
1

]

Πbulk
0 =

π

30
(k2 + ~k

′2)R5R6

[−2

ε

]
+ O(ε0), Πbulk

1 = O(ε0) (2.19)

Here Πbulk
0 and Πbulk

1 have an expression identical to that of Πf
0 of (2.11) and Πf

1 of

(2.12) respectively, but with ρ0(x) = (1 − 2x)2, ρ1(x) = 2(2x − 1). The divergence of

Πbulk
µν requires a higher derivative counterterm, of structure identical to that for fermions:

R5R6F
MN

¤6FMN . We return to discuss the role of such operators in sections 2.3), (3.

For the brane correction the Kaluza-Klein loop momentum ~p′ is fixed by the differ-

ence between ingoing and outgoing Kaluza-Klein momenta ~k and ~k′. After introducing a

Feynman parameter and shifting the 4D momentum, we also find the brane correction as

Πbrane
µν [k,~k,~k′]=−g2

2
µ4−d

∑

~p′

∫ 1

0
dx

∫
ddp

(2π)d
1

(p2 − ∆)2

[
2(1 − 3x + 2x2)(k2 − ~k′2)gµν

− (1 − 2x)2kµkν + 4(x − 1)~k′ · (~p′ + x~k′)gµν

]
· δ

−2~p′,~k′−~k
(2.20)

=
−ig2

2(4π)2

{
1

3

[
2

ε
+ln 4πµ2e−γE

]
(gµνk2−kµkν−3~k.~k′gµν)−

∫ 1

0
dxs(x) ln ∆

}

with

s(x) = 2(1−3x+2x2)(k2−~k
′2)gµν−(1−2x)2kµkν +4(x − 1)(~k/2 + (x − 1/2)~k′)2gµν . (2.21)

Therefore, to cancel the one-loop divergence of the brane correction, brane-localised gauge

kinetic terms containing the derivatives with respect to the extra dimensions are required.

The remaining integral over x is finite. In conclusion, a bulk scalar in 6D leads to both

bulk higher derivative and brane-localised gauge kinetic terms.

2.3 A hypermultiplet contribution

We consider the contribution of a hypermultiplet to the vacuum polarisation. A hypermul-

tiplet is composed of one Dirac fermion and two complex scalars with opposite charges.

Using eqs. (2.9) and (2.17) with (2.18), we easily obtain the contribution in a simple form

as

Πhyper
µν = Πf

µν + Πs
µν,+ + Πs

µν,−

= −g2δ~k,~k′ [(k
2 − ~k′2)gµν − kµkν ]µ4−d

∑

~p′

∫ 1

0
dx

∫
ddp

(2π)d
1

(p2 − ∆)2
. (2.22)

As indicated, the scalars take opposite
�

2 parities. Consequently, we note that the would-

be mass corrections to Kaluza-Klein modes of gauge bosons that we referred to earlier

6This is particularly relevant in non-supersymmetric models, where similar corrections are present.
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in the scalar and fermionic contributions are cancelled out due to supersymmetry. Also

the two would-be brane contributions of the scalars are cancelled out. The above result

obtained in the component field formalism is in agreement with that obtained in a similar

calculation using instead the superfield approach [9].

The explicit evaluation of Πhyper is rather technical and we provide the details in

appendix D. Essentially one performs the momentum integral in (2.22) in the DR scheme,

then re-writes that result in proper-time representation and finally performs the double sum

over the discrete momenta ~p ≡ (p5, p6). Using eqs. (D.20), (D.21) for J0, with a1 ≡ 1/R2
5

and a2 ≡ 1/R2
6, one finds the contribution of a hypermultiplet in Euclidean space7:

Πhyper(k,~k′) =
i µ4−d

(4π)d/2

∑

~p′

∫ 1

0
dxΓ[2 − d/2]

[
x(1 − x)(k2 + ~k

′2) + (~p′ + x~k′)2
]d/2−2

=
iπ2µ4−d

(2π)d

∑

~p′

∫ 1

0
dx

∫ 1

0

dt

td/2−1
e−πt

[
x(1−x)(k2+~k

′2)+(~p′+x~k′)2
]

=
iπ2σ µ4−d

(2π)d

∫ 1

0
dx J0

[
x(1 − x)(k2 + ~k′2); xk′

5R5, xk′
6R6

]

=
iσ

(4π)2

{
πR5R6

6
(k2+~k

′2)

[−2

ε
− ln 4π2µ2

]
+

∫ 1

0
dxJ finite

0

]}
(2.23)

with

J finite
0 [c; c1, c2] ≡ J0[c; c1, c2] − πR5R6 c

(
− 2

ε

)
. (2.24)

The above definition of J finite
0 together with (D.20), (D.21) shows that J finite

0 contains no

pole in ε. Here c = x(1 − x)(k2 + ~k′2), c1 = xk′
5R5, c2 = xk′

6R6.

Eq. (2.23) is an important result of this paper. The presence of the momentum-

dependent divergence (k2+~k
′2)/ε in Πhyper(k,~k′) suggests the need for a higher derivative

operator as a counterterm to the one-loop correction. Note that the counterterm required

is actually a bulk operator since it is of 6D Lorentz invariant form. Its form is the super-

symmetric version of that already encountered for bulk scalar and fermion contributions.

The need for such an operator is ultimately a reflection of the fact that the initial theory is

non-renormalisable. The divergence found is due to re-summing the infinitely many bulk

mode contributions in J0, each of them bringing a pole 1/ε, to obtain instead a k2/ε pole.

This means the k2/ε pole is of non-perturbative origin. Note that calculations in the past,

performed for vanishing external momenta, k2+~k
′2 = 0, missed the presence of such higher

derivative operators, since the coefficient of the pole is then formally8 set to zero.

7The term ln µ2 is made dimensionless by additional logarithmic terms in J finite
0 , not shown explicitly.

8Strictly speaking this should not be the case: even in such limiting cases, mathematical consistency

would require one to introduce an infrared regulator λIR (here replaced by (k2 +~k
′2)) to find a term which

“mixes” the IR (λIR) and UV (ε) regulators/terms; such unwelcome UV-IR mixing [11, 14] would signal
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If one also introduces a non-trivial complex structure for the underlying torus, U =

R6/R5e
iθ (in our case θ = π/2), then the coefficient of the pole in eq. (2.23) becomes

proportional to R5R6 sin θ. For θ = 0, when the two dimensions collapse onto each other,

one obtains the 5D limit [7] as expected, and no pole is present anymore in that case.

This is consistent with the fact that such operators are not generated by one-loop gauge

corrections in the 5D case where only a single sum over modes is present. However, at two

loop order, two sums over the modes are present and higher derivative operators will again

be generated, even in 5D. In conclusion such higher derivative operators are usually present

in compactifications, being dynamically generated at the loop level. These operators can

also be boundary-localised, in the case of localised superpotential interactions [5 – 7].

Returning to eq. (2.23), the integral over x contains no poles and can be evaluated

numerically, using our detailed expressions for J0 in appendix D. In specific cases further

simplifications can occur, for example when ~k′ = 0. The analysis of the higher derivative

operator and of Πhyper will be further extended to the case of non-Abelian theories, where

its expression and properties will be discussed in greater detail.

3. The effective action for non-Abelian gauge theories on orbifolds

So far we have considered the case of Abelian gauge theories. In this section we continue our

analysis of one-loop corrections and derive the effective action for a non-Abelian gauge the-

ory in higher dimensions by developing an approach outlined by Peskin and Schroeder [24].

To this purpose we employ a background field method applicable to orbifold compactifica-

tions. First we present the method and derive the general form of the one-loop effective

action, then we apply it to the case of the T 2/
�

2 orbifold.

3.1 Background field method for gauge theories in higher dimensions

Let us start with the relevant terms of the 6D supersymmetric action with a hypermultiplet

in a representation of the bulk gauge group

S =

∫
d6X

[
1

g2
Tr

(
− 1

2
FMNFMN + 2λ̄ iγMDMλ

)
+ ψ̄ iγ̄MDMψ +

∑

±

|DMφ±|2
]

(3.1)

where FMN = ∂MAN −∂NAM −i[AM , AN ], DMλ = ∂Mλ−i[AM , λ], DMψ = (∂M −iAM )ψ

and DMφ± = (∂M∓iAM )φ±. To introduce the background field method, we split the gauge

field into a classical background and a quantum fluctuation:

Aa
M → Aa

M + Aa
M . (3.2)

Then,

ψ̄iγ̄MDMψ → ψ̄iγ̄MDMψ + Aa
M ψ̄γ̄M taψ, (3.3)

where DM is the covariant derivative with respect to the background gauge field.

a non-decoupling of high scale physics from its IR region. This would lead one to conclude that higher

derivative counterterms are required, if one remembers that the IR regulator can be equivalently replaced

by non-zero momentum inflow.
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Likewise, the gauge field strength is decomposed as

F a
MN → F a

MN + DMAa
N − DNAa

M + fabcAb
MAc

N . (3.4)

Considering the higher dimensional generalisation of the Faddeev-Popov procedure for the

gauge-fixing, the 6D Lagrangian in the Feynman-’t Hooft gauge is given by

LFP = − 1

4g2

(
F a

MN + DMAa
N − DNAa

M + fabcAb
MAc

N

)2
− 1

2g2
(DMAa

M)2

+
1

g2

[
2Tr

(
λ̄iγMDMλ

)
+ iλ̄afabcAb

MγMλc
]

+ ψ̄
(
iγ̄MDM + Aa

M γ̄M ta
)
ψ

+
∑

±

(
|DMφ±|2 ∓ (DMφ±)∗iAa

M taφ± ± iφ∗
±AaM taDMφ± + φ∗

±(Aa
M ta)2φ±

)

+c̄a
(
− (D2)ac − DMfabcAb

M

)
cc, (3.5)

where ca are ghost fields and D2 = DMDM .

In order to compute the effective action at one-loop order, we shall ignore terms linear

in Aa
M and integrate over the terms which are quadratic in the gauge fields Aa

M , gauginos

λ, hyperinos ψ, hyperscalars φ and ghost fields c. After integration by parts, the quadratic

terms in Aa
M are simplified to

LA = − 1

2g2

{
Aa

M

[
− (D2)acgMN − 2fabcF bMN

]
Ac

N

}
. (3.6)

By using the generator of 6D Lorentz transformations on 6-vectors,

(
J PQ

)
MN

= i
(
δP
MδQ

N − δQ
MδP

N

)
(3.7)

satisfying

tr
(
J PQJMN

)
= 2

(
gPMgQN − gPNgQM

)
, (3.8)

we can rewrite the above Lagrangian as

LA = − 1

2g2

{
Aa

M

[
− (D2)acgMN + 2

(1

2
F b

PQJ PQ
)MN

(tbG)ac
]
Ac

N

}
(3.9)

with (tbG)ac ≡ ifabc. Further, the quadratic terms in fermion fields are

Lf =
1

g2
Tr

(
2λ̄iγMDMλ

)
+ ψ̄iγ̄MDMψ. (3.10)

Integrating over the fermion fields, we obtain the functional determinant of the operator

(iγMDM ) for the gaugino and (iγ̄MDM ) for the hyperino. Finally, the quadratic terms in

hyperscalars (Ls) and ghost fields (Lg) are

Ls =
∑

±

(φa
±)∗[−(D2)ac]φc

±, (3.11)

Lg = c̄a[−(D2)ac]cc. (3.12)
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With these findings, after performing the path integral for the terms quadratic in quantum

fluctuations, we obtain the effective action for the classical field Aa
M at one-loop order as

eiΓ[A] = exp

[
i

∫
d6X

(
− 1

4g2
(F a

MN )2 + Lc.t.

)]
(3.13)

×(det∆G,1)
− 1

2 (detDG)+1[det(−∆G,0)]
+1(detDr)

+1[det(−∆r,0)]
−1[det(−∆r∗,0)]

−1

with

∆G,1 =
1

g2

[(
− D2

1g
MN + 2

(1

2
F b

PQ1J PQ
)MN

tbG

)
δAN
12

]
,

∆G,0 = −D2
1 δc

12, ∆r,0 = −D2
1 δφr

12 ,

DG =
1

g2

(
iγM∂M1 + Aa

M1t
a
GγM

)
δλ
12,

Dr =
(
iγ̄M∂M1 + Aa

M1t
a
r γ̄

M
)

δψ
12, (3.14)

where r denotes the corresponding representation and an extra index ”1” as in f1 denotes

f(X1) while the δ12’s are defined as functional differentiations presented below. Finally, as

the upper letter on the δ12’s imply, the above expressions are contributions of the gauge

bosons, ghosts, hyperscalars, gaugino and hyperino fields respectively. Further

(δAM
12 )a b ≡ δAa

M (X1)

δAb
M (X2)

, (δφr
12 )a b ≡

δφa
r(X1)

δφb
r(X2)

, (3.15)

and similar for the remaining fields. Note that as long as there is no orbifold action present

δAM
12 = δφr

12 = δλ
12 = δψ

12 = δ6(X1 − X2). With these observations, we have the full one-loop

effective action

Γ[A] =

∫
d6X

(
− 1

4g2
(F a

MN )2 + Lc.t.

)

+
i

2

[
ln det∆G,1 − 2 ln detDG − 2 ln det(−∆G,0)

−2 ln detDr + 2 ln det(−∆r,0) + 2 ln det(−∆r∗,0)

]
. (3.16)

This is the general formula for the one-loop effective action in higher dimensions with our

field content. It can be applied to specific cases, by computing the above determinants,

after specifying the boundary conditions for the fields involved.

3.2 The effective action on the T 2/
�

2 orbifold

We can now apply the method presented in the previous section to the case of orbifold

compactifications, where important changes appear due to the presence of the associated
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boundary conditions with respect to the compact dimensions. On the orbifold T 2/
�

2, the

orbifold boundary conditions are given by

Aa
µ(x,−z) = Aa

µ(x, z), Aa
5,6(x,−z) = −Aa

5,6(x, z),

ca(x,−z) = ca(x, z), λ(x,−z) = iγ5 λ(x, z), (3.17)

ψ(x,−z) = iγ5 η ψ(x, z), φ±(x,−z) = ±ηφ±(x, z)

where η can be chosen either +1 or −1. Taking into account these boundary conditions,

the functional differentiations defined in (3.15) can be made orbifold-compatible as follows:

δ
Aµ

12 =
1

2

(
δ6(X1 − X2) + δ6(X1 + X2)

)
= δc

12 ≡ δ+
12,

δAn
12 =

1

2

(
δ6(X1 − X2) − δ6(X1 + X2)

)
≡ δ−12,

δ
φ±

12 =
1

2

(
δ6(X1 − X2) ± η δ6(X1 + X2)

)
(3.18)

δλ
12 =

1

2

(
δ6(X1 − X2) − iγ5δ6(X1 + X2)

)

δψ
12 =

1

2

(
δ6(X1 − X2) − iη γ5δ6(X1 + X2)

)

where δ6(X1±X2) ≡ δ4(x1−x2)δ
2(z1±z2). We can now evaluate the determinants in (3.16)

giving the contributions of various fields to the one-loop effective action. To second order

in the background gauge field we have from eq. (3.16)

Γ(2)[AM ] =
1

2g2

∑

~k

∫
d4k

(2π)4
Aa

M (−k,−~k)Ab
N (k,~k)(−(k2 − ~k2)gMN + kMkN )

+
i

2

[
WG,1 − 2WG,0 − 2Wgaugino + 2Whypers − 2Whyperino

]
(3.19)

where each W is the quadratic term of the corresponding log determinant in (3.16).

3.2.1 Gauge field contribution WG,1

We start with the contribution of the gauge bosons and first introduce the notation:

M≡
(
−∂2

1gµνδ+
12 0

0 −∂2
1gmnδ−12

)
, N ≡

(
(∆Ggµν + ∆µν)1δ

+
12 ∆µn

1 δ−12
∆mν

1 δ+
12 (∆Ggmn + ∆mn)1δ

−
12

)
(3.20)

where

∆G ≡ ∆
(1)
G + ∆

(2)
G

∆
(1)
G ≡ i

[
∂MAa

M taG + Aa
M taG∂M

]
, ∆

(2)
G ≡ AaM taGAb

M tbG, (3.21)

∆MN ≡ 2
(1

2
F b

PQJ PQ
)MN

tbG.
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With this notation and (3.14) we obtain

ln det ∆G,1 = ln det
1

g2

[
M + N

]
= ln det

1

g2
M−

∞∑

n=1

1

n
tr

[
(OM

N )n
]

= ln det
1

g2
M− tr(Oν

µ) − tr(Om
n)

− 1

2

[
tr(Oν

λOλ
µ) + tr(Om

lOl
n) + tr(Oν

lOl
ν) + tr(Om

λOλ
n)

]
+ · · · , (3.22)

where we introduced

OM
N ≡

(
δ+

12i(−∂2
2)−1gνλ 0

0 δ−12i(−∂2
2)−1gml

)


i(∆Ggλµ+∆λµ)2δ
+

23 i∆λn
2 δ−23

i∆lµ
2 δ+

23 i(∆Ggln+∆ln)2δ
−

23


 (3.23)

Therefore, the terms in ln det∆G,1 quadratic in the background gauge field are

WG,1[AM ] = 4 (TG+
1 + TG+

2 ) + 2 (TG−
1 + TG−

2 ) + TG
3 + TG

4 + TG
5 + TG

6 . (3.24)

Their origin is as follows: 4(TG+
1 +TG+

2 ) accounts for part of the term tr(Oν
λOλ

µ) and for

the term tr(Oν
µ), while 2(TG−

1 +TG−
2 ) accounts for similar terms but with matrices entries

with extra dimensional Lorentz indices. The different factors multiplying them (4 and 2)

arise from the different metric contractions. Further, TG
3 accounts for (the remaining part

of) tr(Oν
λOλ

µ) while TG
4 accounts for similar contribution but with all Lorentz indices

extra dimensional. Finally, TG
5,6 account for the “mixed” indices contributions, the last two

terms in the last line of (3.22), respectively. All these contributions can be easily identified

by recalling that δ+
ij (δ−ij) arise with contributions from 4D (extra dimensional) Lorentz

indices, respectively, as seen from the definition of OM
N . The results of evaluating the

terms in (3.24) are then

TG±
1 + TG±

2 ≡ −1

2
tr

[(
δ±12 i(−∂2

2)−1 (i∆
(1)
G,2 δ±23)

) (
δ±34i(−∂2

4)−1 (i∆
(1)
G,4 δ±41)

)]

−tr
[
δ±12i(−∂2

2)−1(i∆
(2)
G,2δ

±
21)

]

= −1

2
C2(G)

∑

~k,~k′

∫
d4k

(2π)4
AaM (−k,−~k′)AaN (k,~k) Πs

MN,±. (3.25)

One should consider in (3.25) either the upper or the lower signs only. Further TG
3 is
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generated by parity-even gauge fields, as the presence of δ+
ij shows and equals

TG
3 ≡ −1

2
tr

[(
δ+
12 i(−∂2

2)−1 (i(∆ν
λ)2 δ+

23)
) (

δ+
34i(−∂2

4)−1 (i(∆λ
µ)4 δ+

41)
)]

= 2 tr
[
J ρσtaGJ αβtbG

]∑

~k,~k′

∫
d4k

(2π)4
Aa

µ(−k,−~k′)Ab
ν(k,~k) kρ gµ

σ kα gν
β

×
∑

~p,~p′

∫
d4p

(2π)4
G̃+(p, ~p, ~p′) G̃+(p + k, ~p′ + ~k′, ~p + ~k)

= 4C2(G)
∑

~k,~k′

∫
d4k

(2π)4
Aa

µ(−k,−~k′)Aa
ν(k,~k)

(
k2gµν − kµkν

)
ΠG

++, (3.26)

TG
4 has similar form, but involves only parity-odd fields (notice the presence of δ−ij):

TG
4 ≡ −1

2
tr

[(
δ−12 i(−∂2

2)−1 (i(∆m
l)2 δ−23)

)(
δ−34i(−∂2

4)−1 (i(∆l
n)4 δ−41)

)]

= 2tr
[
J ijtaGJ kltbG

]∑

~k,~k′

∫
d4k

(2π)4
Aa

m(−k,−~k′)Ab
n(k,~k) k′

i gm
j kk gn

l

×
∑

~p,~p′

∫
d4p

(2π)4
G̃−(p, ~p, ~p′) G̃−(p + k, ~p′ + ~k′, ~p + ~k),

= 4C2(G)
∑

~k,~k′

∫
d4k

(2π)4
Aa

m(−k,−~k′)Aa
n(k,~k)

(
− ~k′ · ~kgmn − kmk′n

)
ΠG

−−, (3.27)

Finally TG
5 and TG

6 have similar structure, involving parity-odd and -even component fields:

TG
5 ≡ −1

2
tr

[(
δ+
12 i(−∂2

2)−1 (i(∆ν
l)2 δ−23)

) (
δ−34 i(−∂2

4)−1 (i(∆l
µ)4 δ+

41)
)]

= 2 tr
[
(J λk)ν

ltaG(J ρn)l
µtbG

](
kλAa

k(−k,−~k′) − k′
kA

a
λ(−k,−~k′)

)

(
kρA

b
n(k,~k) − knAb

ρ(k,~k)
) ∑

~p,~p′

∫
d4p

(2π)4
G̃−(p, ~p, ~p′) G̃+(p + k, ~p′ + ~k′, ~p + ~k)

= −2C2(G)
∑

~k,~k′

∫
d4k

(2π)4

(
kµAa

k(−k,−~k′) − k′
kA

a
µ(−k,−~k′)

)

×
(
kρA

a
n(k,~k) − knAa

ρ(k,~k)
)

gρµgkn ΠG
−+, (3.28)
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and

TG
6 ≡ −1

2
tr

[(
δ−12 i(−∂2

2)−1 (i(∆n
λ)2 δ+

23)
) (

δ+
34 i(−∂2

4)−1 (i(∆λ
m)4 δ−41)

)]

= 2 tr
[
(J µk)n

λtaG(J ρl)λ
mtbG

]∑

~k,~k′

∫
d4k

(2π)4

(
kµAa

k(−k,−~k′) − k′
kA

a
µ(−k,−~k′)

)

(
kρA

b
l (k,~k) − klA

b
ρ(k,~k)

) ∑

~p,~p′

∫
d4p

(2π)4
G̃+(p, ~p, ~p′) G̃−(p + k, ~p′ + ~k′, ~p + ~k)

= −2C2(G)
∑

~k,~k′

∫
d4k

(2π)4

(
kµAa

k(−k,−~k′) − k′
kA

a
µ(−k,−~k′)

)

×
(
kρA

a
n(k,~k) − knAa

ρ(k,~k)
)

gρµgkn ΠG
+−. (3.29)

In the equations above we used the notation C2(G) defined by tr(taGtbG) = C2(G)δab. In

terms of the bulk propagator for bosons (See also eq. (B.7)),

G̃±(p, ~p, ~p′) =
i

2

δ~p,~p′ ± δ~p,−~p′

p2 − ~p2
, (3.30)

one has the following expressions for Πs
MN,± and ΠG

αβ used previously

Πs
MN,± =

∑

~p,~p′

∫
d4p

(2π)4

[
− (2p′ + k′)M (2p + k)N G̃±(p + k, ~p′ + ~k′, ~p + ~k)

+2igMNδ
~p′,~p+~k−~k′

]
· G̃±(p, ~p, ~p′)

= −1

2

∑

~p′

∫
d4p

(2π)4
−(2p′ + k′)M (2p + k)N + 2gMN [(p + k)2 − (~p′ + ~k′)2]

(p2 − ~p′2)[(p + k)2 − (~p′ + ~k′)2]

×
(
δ~k,~k′ ± δ

−2~p′,~k′−~k

)
, (3.31)

ΠG
±± =

∑

~p,~p′

∫
d4p

(2π)4
G̃±(p, ~p, ~p′) G̃±(p + k, ~p + ~k, ~p′ + ~k′)

= −1

2

∑

~p′

∫
d4p

(2π)4

δ~k,~k′ ± δ
−2~p′,~k′−~k

(p2 − ~p′2)[(p + k)2 − (~p′ + ~k′)2]
(3.32)

and

ΠG
±∓ =

∑

~p,~p′

∫
d4p

(2π)4
G̃±(p, ~p, ~p′) G̃∓(p + k, ~p + ~k, ~p′ + ~k′) = ΠG

±,±. (3.33)

To obtain the above results for TG
5 and TG

6 we had to change the order of operators in an

appropriate way, by using O2δ
±
23 = δ±23O3 for the

�
2-even operator O while Õ2δ

±
23 = δ∓23Õ3

for the
�

2-odd operator Õ. Further, to simplify the Kronecker deltas, we have taken into

account the
�

2-parity conditions: Aa
µ(k,~k′) = Aa

µ(k,−~k′) and Aa
m(k,~k′) = −Aa

m(k,−~k′).

This concludes the evaluation of the gauge fields contribution WG,1 of (3.24).
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3.2.2 Ghost field contribution WG,0

Next we evaluate the determinant of the ghost field contribution (3.14) with (3.18)

ln det(−∆G,0) = ln det
(
(∂2 − ∆G)1δ

+
12

)

= ln det(∂2
1δ+

12) −
∞∑

n=1

1

n
tr

[(
δ+
12i(−∂2

2)−1i(∆G)2δ
+
23

)n]
. (3.34)

from which, upon expansion, we isolate the quadratic terms for the background field as

WG,0[AM ] = TG+
1 + TG+

2 . (3.35)

The sum on the right-hand side was already computed in (3.25).

3.2.3 Hyperscalar contribution Whypers

Likewise, the quadratic terms from the determinant for hyperscalars are, with (3.14), (3.18)

ln det(−∆r,0) = ln det
(
(∂2 − ∆r)1δ

η
12

)

= ln det(∂2
1δη

12) −
∞∑

n=1

1

n
tr

[(
δη
12i(−∂2

2)−1i(∆r)2δ
η
23

)n]
. (3.36)

with the notation of ∆ as in eq. (3.21) with G → r. One finds from (3.36)

Whypers[AM ] = (T r+
1 + T r+

2 ) + (T r−
1 + T r−

2 ) (3.37)

where T r±
1,2 =

[
C(r)/C2(G)

]
TG±

1,2 and with TG±
1 + TG±

2 already evaluated in eq. (3.25).

Here C(r) is defined by tr(tar t
b
r) = C(r)δab.

3.2.4 Gaugino and hyperino contributions Wgaugino and Whyperino

Finally, we evaluate the determinants for the fermion fields, which are expanded as (using

again (3.14), (3.18))

ln detDG = ln det
[ 1

g2
(iγM∂M1 + Aa

M1t
a
GγM )δλ

12

]

= ln det
[ 1

g2
iγM∂M1δ

λ
12

]
−

∞∑

n=1

1

n
tr

[{
δλ
12

i

iγP ∂P2
(iAa

M2t
a
GγMδλ

23)

}n]
, (3.38)

ln detDr = ln det
[
(iγ̄M∂M1 + Aa

M1t
a
r γ̄

M )δψ
12

]

= ln det
[
iγ̄M∂M1δ

ψ
12

]
−

∞∑

n=1

1

n
tr

[{
δψ
12

i

iγ̄P ∂P2
(iAa

M2t
a
r γ̄

Mδψ
23)

}n]
. (3.39)

with the former (latter) for gaugino (hyperino) fields, respectively. From these eqs. the

quadratic terms coming from the determinants of gaugino and hyperino are evaluated to

Wgaugino[AM ] = −1

2
tr

[
δλ
12

i

iγP ∂P2
(iAa

M2t
a
GγMδλ

23) δλ
34

i

iγQ∂Q4
(iAb

N4t
b
GγNδλ

41)

]

=
1

2
tr(taGtbG)

∑

~k,~k′

∫
d4k

(2π)4
AaM (−k,−~k′)AbN (k,~k) Π̃f

MN , (3.40)
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Whyperino[AM ] = −1

2
tr

[
δψ
12

i

iγ̄P ∂P2
(iAa

M2t
a
r γ̄

Mδψ
23) δψ

34

i

iγ̄Q∂Q4
(iAa

N4t
a
r γ̄

Nδψ
41)

]

=
1

2
tr(tar t

b
r)

∑

~k,~k′

∫
d4k

(2π)4
AaM (−k,−~k′)AbN (k,~k)Πf

MN (3.41)

Here we introduced the following self-energies

Π̃f
MN ≡

∑

~p,~p′

∫
d4p

(2π)4
Tr

[
D̃λ(p, ~p, ~p′)γM D̃λ(p + k, ~p′ + ~k′, ~p + ~k)γN

]
, (3.42)

Πf
MN ≡

∑

~p,~p′

∫
d4p

(2π)4
Tr

[
D̃ψ(p, ~p, ~p′)γ̄M D̃ψ(p + k, ~p′ + ~k′, ~p + ~k)γ̄N

]
, (3.43)

and used the propagators on T 2/
�

2 (for details see the appendix, eq. (B.4))

D̃λ(p, ~p, ~p′) =
i

2

(
δ~p,~p′

p/ + γ5p5 − p6
− δ~p,−~p′

p/ + γ5p5 − p6
iγ5

)
, (3.44)

D̃ψ(p, ~p, ~p′) =
i

2

(
δ~p,~p′

p/ + γ5p5 + p6
− ηδ~p,−~p′

p/ + γ5p5 + p6
iγ5

)
. (3.45)

This concludes the identification of all component field contributions to the effective action.

We now have the necessary technical results eqs. (3.24), (3.35), (3.37), (3.40), (3.41), to

analyse the one-loop effective action of non-Abelian gauge theories on T 2/
�

2.

3.2.5 The one-loop effective action on T 2/
�

2, its poles and counterterms

In the following we concentrate on the 4D gauge field part of the effective action. In this

case, we note that Πf
µν and Πs

µν,± are the same as the ones in (2.9), (2.17), respectively,

which were obtained by using the Feynman diagram approach in the U(1) case. Therefore,

using (3.19), the 4D gauge field part of the effective action can be written as

Γ(2)[Aµ] =
1

2g2

∑

~k

∫
d4k

(2π)4
Aa

µ(−k,−~k)Aa
ν(k,~k)

(
− (k2 − ~k2)gµν + kµkν

)

+
i

2

∑

~k,~k′

∫
d4k

(2π)4
Aaµ(−k,−~k′)Aaν(k,~k) (3.46)

×
{
C2(G)

[
−Πhyper

µν +4(k2gµν−kµkν)ΠG
++ − 2~k · ~k′gµν(ΠG

+−+ΠG
−+)

]
−C(r)Πhyper

µν

}

where

Πhyper
µν ≡ Πs

µν,+ + Πs
µν,− + Πf

µν . (3.47)

Then, by decomposing this effective action into bulk and brane parts, we reach the main

result of section 3.2:

Γ(2)[Aµ] = Γbulk + Γbrane (3.48)
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with

Γbulk =
1

2

∑

~k,~k′

∫
d4k

(2π)4
Aa

µ(−k,−~k′)Aa
ν(k,~k)

(
(k2 − ~k2)gµν − kµkν

)

×
[
− 1

g2
− i

(
C2(G) − C(r)

)
Πhyper(k,~k′)

]
δ~k,~k′ , (3.49)

Γbrane =
1

2

∑

~k,~k′

∫
d4k

(2π)4
Aa

µ(−k,−~k′)Aa
ν(k,~k)

(
k2gµν−kµkν

)[
−4iC2(G)Πlocal(k,~k,~k′)

]
(3.50)

where

Πhyper(k,~k′) ≡ µ4−d
∑

~p′

∫
ddp

(2π)d
1

(p2 − ~p′2)[(p + k)2 − (~p′ + ~k′)2]
, (3.51)

Πlocal(k,~k,~k′) ≡ µ4−d

2

∑

~p′

∫
ddp

(2π)d

δ
−2~p′,~k′−~k

(p2 − (~p′)2)[(p + k)2 − (~p′ + ~k′)2]
. (3.52)

From the expression of Γbulk we see that the bulk correction comes with the standard

beta function coefficient9 in 6D which is given by C(r) − C2(G). Note also that, as in

the Abelian case discussed previously, a hypermultiplet does not generate a boundary-

localised gauge coupling. However, a 6D bulk counterterm can be present as we already

saw in the Abelian case (2.23), when evaluating Πhyper. Unlike the hypermultiplet, a vector

multiplet does generate boundary-localised gauge couplings, see eqs. (3.50), (3.52). The

corresponding (4D) counterterm that we discuss shortly must then be localised at the fixed

points.

The divergent nature of Πhyper of eq. (3.51) was already presented and discussed to

some extent in the Abelian case, section 2, eq. (2.23). Since Πhyper also appears in the bulk

correction in the case of non-Abelian gauge theories, eq. (3.51), we analyse this in further

detail. From eq. (2.23), let us recall the following,

Πhyper(k,~k′) =
iσ

(4π)2
(2πµ)ε

∫ 1

0
dxJ0

[
x(1 − x)(k2 + ~k

′2);xk′
5R5, xk′

6R6

]
. (3.53)

The exact expression of J0 is needed for studying the finite effects and the dependence

of the zero-mode gauge coupling on the momentum k2. This expression would also be

needed to study dimensional crossover effects [15] of the coupling at k2 ∼ 1/R2
5,6. Since J0

is rather complicated, we present J0 below, for a somewhat simpler case of k′
5 = k′

6 = 0.

From eqs. (D.1), (D.20), (D.21), (D.22) and with the following notations

c ≡ x(1 − x)k2, a1 ≡ 1

R2
5

, a2 ≡ 1

R2
6

, sñ1 ≡ 2πñ1

√
c

a1
, γ(n1) ≡

(c + a1n
2
1 )

1
2√

a2

, (3.54)

one has, if 0 ≤ c/a1 < 1:

9Because the number of modes is reduced due to orbifolding, the beta function coefficient is 1/2 times

that for a torus compactification.
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J0[c; 0, 0] =
πc√
a1a2

[−2

ε
+ln

[
4π a1 e−γE

]]
−

∑

n1∈Z

ln
∣∣∣1 − e−2π γ(n1)

∣∣∣
2
+

π

3

√
a1

a2
− 2π

√
c

a2

−2
c π

1
2

√
a1a2

∑

p≥1

Γ[p+1/2]

(p+1)!

[−c

a1

]p

ζ[2p + 1] (3.55)

with γE = 0.577216 . . .. If c/a1 > 1, then

J0[c; 0, 0] =
πc√
a1a2

[−2

ε
+ln

[
π c eγE−1

]]
−

∑

n1∈Z

ln
∣∣∣1−e−2π γ(n1)

∣∣∣
2
+4

√
c

a2

∑

ñ1>0

K1(sñ1)

ñ1
. (3.56)

Here ζ[x] is the Riemann Zeta function; K1 is the modified Bessel function, see appendix E

for definitions. The pole structure is the same for both expressions of J0. Regarding the

finite terms, J0 of eq. (3.55) has power-like terms in c ∼ k2 but these are suppressed by

the radii/area of the compactification. These terms are the counterpart of the term10 c ln c

of eq. (3.56) in the case c/a1 ≥ 1. Note that in the first square bracket, J0 in (3.56) has a

power-like dependence on c ∼ k2 whereas the last two terms in J0 are exponentially sup-

pressed at large c/a1 ∼ k2R2
5 and (given the symmetry a1 ↔a2) also at large c/a2∼k2R2

6.

The above expressions are important when we discuss the running of the effective gauge

coupling and of the coupling of the higher derivative operator, after cancelling the diver-

gence in eq. (3.53).

Let us consider some limiting cases. If k2¿min(1/R2
5, 1/R

2
6), eqs. (3.53), (3.55) give:

Πhyper(k, 0) ≈ iσ

(4π)2

{
π

6
R5R6k

2

[−2

ε
− ln

[
πeγE µ2R2

5

∣∣η(iR6/R5)
∣∣−4

]]

−ln
[
4π2e−2

∣∣η(iR6/R5)
∣∣4R2

6 k2
]}

(3.57)

where we used the Dedekind η function, see eq. (E.6). This result shows that after the

addition of the higher derivative counterterm which will cancel the pole, the hypermultiplet

only brings in a logarithmic dependence with respect to the momentum k2, at values of

k2 much smaller than 1/R2
5,6. Note that this is a low-energy logarithm, originating from

bulk contributions! If one evaluated instead Πhyper(k2 = 0, 0), an IR mass regulator µ2
IR

(replacing k2) would still be required for mathematical consistency. This would then lead

to a troublesome UV-IR mixing of type µ2
IR/ε in (3.57), on which the limits µIR →0 and

ε→ 0 do not commute. This would simply mean that the UV physics does not decouple

in the low energy limit. This shows, even in the on-shell result for Πhyper, that there is a

need for a higher derivative counterterm, for quantum consistency. We return to this issue

in section 5.

In the case k2 À max(1/R2
5, 1/R

2
6), eqs. (3.53) and (3.56) give:

Πhyper(k, 0) ≈ iσ

(4π)2

{
π

6
R5R6k

2

[−2

ε
− ln

µ2

k2
− ln

(
4πe8/3−γE

)]}
. (3.58)

10This term (c ln c) will be important for the running of the higher derivative operator coupling, see later.
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Finally, the brane correction Πlocal of (3.52) also has a divergence. For any 6D momenta

Πlocal(k,~k,~k′)=
i

32π2

{
2

ε
+ln 4πµ2e−γE −

∫ 1

0
dxln

[
x(1 − x)(k2+~k

′2)+
(~k

2
+

(
x− 1

2

)
~k′

)2]}

(3.59)

which if ~k = ~k′ = 0 simplifies to:

Πlocal
(
k, 0, 0

)
=

i

32π2

{
2

ε
+ ln 4πe2−γE + ln

µ2

k2

}
, (3.60)

where µ is the arbitrary (finite) scale introduced by the regularisation scheme.

The poles in Πhyper and Πlocal that we identified can be cancelled by introducing the

following counterterms in the action:

Lc.t =

∫
d2z d2θ

[
1

2h2
Tr W α

¤6Wα+
1

2

4∑

i=1

1

g2
brane,i

Tr W α Wαδ(2)(z−zi
0)

]
+ h.c. (3.61)

Here zi
0(i = 1, . . . , 4) are the fixed points of the T 2/

�
2 orbifold considered. Further, h2 is

an additional dimensionless bulk coupling while gbrane,i is a dimensionless brane coupling

at the fixed point zi
0. The introduction of such counterterms to cancel the poles is done up

to an overall finite, unknown coefficient. As a result new parameters (couplings) emerge in

the theory. For small compactification volume (or k2R2
5,6 ¿ 1), the bulk higher derivative

operator is suppressed; however, for large radii (or k2R2
5,6 À 1) it is relevant and important

for the overall running of the zero-mode gauge coupling. The effect of this operator is largely

ignored in the literature, both in effective field theory and string theory approaches. The

renormalisation and the running of the coupling h(k2) will be considered in the next section.

Regarding the coupling gbrane,i, after its renormalisation there will be one additional

parameter for the gauge kinetic term localised at each fixed point. If one considers such

corrections in GUT models compactified on orbifolds [25], brane-localised gauge couplings

respecting a gauge symmetry smaller than that in the bulk may be present. In that case

the brane couplings are not universal and can affect the gauge coupling unification in such

models [26].

4. “Running” of the effective gauge coupling as induced by the 6D theory

In this section we consider the one-loop renormalisation and running of the coefficients of

the higher derivative operator and of the gauge kinetic term of the zero-mode gauge field.

To begin with, we consider the running of the bulk coupling h in (3.61) for the zero

mode of the gauge field. After subtracting the divergence of the bulk term eq. (3.49)

with eqs. (3.57) and (3.58) by a bulk higher derivative counterterm, one has the following

momentum dependence of the renormalised h:

k2 ¿ 1

R2
5,6

:
4π

h2(k2)
≈ 4π

h2
tree

+
[
− C2(G) + C(r)

] 1

96π2
ln

[
πeγE µ2R2

5

∣∣η(iR6/R5)
∣∣−4

]
,

k2 À 1

R2
5,6

:
4π

h2(k2)
≈ 4π

h2
tree

+
[
− C2(G) + C(r)

] 1

96π2

{
ln

µ2

k2
+ ln 4πe8/3−γE

}
. (4.1)
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After writing each of these equations at two different momentum scales (for the same renor-

malisation scale µ) and subtracting them, we find that above the compactification scales

the bulk coupling of the higher derivative operator runs logarithmically in k2 while below

the compactification scales it does not run. The running of h(k2) above the compactifi-

cation scales is a just a bulk effect, little dependent on the details of localised singulari-

ties associated with the orbifold action11. Note that the higher derivative counterterm in

eq. (3.61) “absorbed” all linear dependence on k2 in eqs. (3.57) and (3.58), arising from

eq. (3.55), (3.56), and this is relevant for the discussion below. For k2R2
5,6 À 1 the coupling

h is not suppressed, and this has implications for the running of the effective gauge coupling

of the zero-mode gauge boson above the compactification scales.

Let us now investigate the running of the effective gauge coupling geff(k2) which is

defined as the coefficient of the gauge kinetic term of zero-mode gauge boson. The tree

level value of the effective gauge coupling has contributions from both bulk and branes,

including the bulk higher derivative term. It can be read off from the following gauge

kinetic term:

− 1

2
Tr

[
Fµν

(
1

g2
tree

+
1

σh2
tree

¤4

)
Fµν

]
(4.2)

where
1

g2
tree

≡ 1

σg2
+

4∑

i=1

1

g2
brane,i

, σ ≡ 1

4π2R5R6
. (4.3)

Here g2 and g2
brane,i are the tree-level gauge couplings in the bulk and at the fixed points,

respectively. Note that, although the brane localised couplings gbrane,i are new parameters

introduced in the theory, the coupling gtree only depends on their overall combination

with the bulk gauge coupling g. Moreover, due to the new parameter htree of the higher

derivative counterterm, ultimately, there is a momentum dependent contribution to the

effective gauge coupling even at tree level.

After taking into account the radiative corrections (see (3.49), (3.50)) the zero-mode

gauge coupling geff(k2) is, at one-loop12:

1

g2
eff(k2)

=
1

g2
tree

− k2

σh2
tree

+ i
[
C2(G) − C(r)

] 1

σ
Πhyper

∗ (k, 0) + 4iC2(G)Πlocal
∗ (k, 0, 0). (4.4)

The subscript ∗ in the self-energy Πlocal
∗ means that only the finite part of Πlocal should be

considered, because its singularity (the pole 2/ε) was cancelled by the tree level coupling

gtree in eq. (3.61). For the self-energy Πhyper
∗ the subscript ∗ refers to the finite part of

Πhyper after the renormalisation of the coefficient of the higher derivative counterterm (4.1);

11See also the discussion in [8].
12Eq. (4.4) can be written in a form which separates massive from massless modes’ contributions:

1

g2
eff(k2)

=
1

g2
tree

−
k2

σh2
tree

− i
h

− C2(G) + C(r)
i 1

σ
Πhyper

m,∗ (k, 0) − i
h

− 3C2(G) + C(r)
i

2Πlocal
∗ (k, 0, 0)

where Πhyper
m,∗ ≡ Πhyper− Πhyper

0,0 , with Πhyper
0,0 the (0,0) mode contribution and we used Πhyper

0,0 /σ = 2Πlocal.

On this form we see the emergence of 4D N =2 and N =1 beta functions of massive and massless sectors.
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therefore Πhyper
∗ does not include the divergence k2/ε in Πhyper which corresponds to the

renormalisation of htree in eq. (4.1). With these considerations, note that gtree and htree

in (4.4) and in the equations to follow denote only the finite part of tree level couplings.

Let us now address the running of geff(k2) and the relation connecting it to the tree level

coupling gtree. To begin with, consider first the case of k2 ¿ 1/R2
5,6. To obtain the running

of geff(k2) for this region one writes (4.4) at two different momentum scales q2, k2 ¿ 1/R2
5,6

for the same renormalisation scale µ and subtracts them, then uses eqs. (3.57) and (3.60)

to find:

4π

g2
eff (q2)

≈ 4π

g2
eff(k2)

+
1

4π

[
− 3C2(G) + C(r)

]
ln

k2

q2
, if q2, k2 ¿ 1

R2
5,6

. (4.5)

This is an interesting result: we have obtained the familiar 4D logarithmic running of

the effective gauge coupling with the usual 4D N = 1 beta function coefficient given by

b1 = −3C2(G) + C(r). Note that this running was derived from the full 6D theory, by

taking into account both bulk and boundary loop effects. This is interesting because part

of the above logarithmic running comes from the bulk13, associated with the massless states.

More explicitly, the logarithmic correction in (4.5) contains a “bulk” part C(r) ln k2 due to

the hypermultiplet, while the vector multiplet provides a “bulk” part −C2(G) ln k2 as well

as a “brane” part −2C2(G) ln k2, which added together give the beta function in (4.5). We

note that the running of the effective coupling geff as shown in eq. (4.5) is unaffected by

the higher derivative operators as long as we are in the region k2 ¿ 1/R2
5,6.

The next step in our analysis is to establish a connection between the tree level coupling

gtree and the gauge coupling at low momentum scales well below the compactification

scales (k2 ¿ 1/R2
5,6), after integrating out all massive Kaluza-Klein modes14. Using again

eq. (4.4) together with (3.57), (3.60), we have

4π

g2
eff (k2)

≈ 4π

g2
tree

− b2

4π
ln

[
4πe−γE

∣∣η(i u)
∣∣4 u (4π2R5R6 µ2)

]
−κ+

b1

4π
ln

ξ1µ
2

k2
, k2¿ 1

R2
5,6

,

with κ ≡ 4π2k2R5R6

[
4π

h2
tree

+
b2

96π2
ln

[
πeγEµ2R5R6u

−1
∣∣η(iu)

∣∣−4
]]

¿ 1.(4.6)

Here u ≡ R6/R5 and ξ1 = 4πe2−γE . Further b1 = −3C2(G) + C(r) is the N = 1 beta

function while b2 = −C2(G) + C(r) is 1/2 of the N = 2 beta function coefficient on the

torus, with 1/2 to account for the fact that the number of modes is reduced on T 2/
�

2. As

written, eq. (4.6) connects geff(k2¿1/R2
5,6) to the tree level coupling gtree, after integrating

out the massive Kaluza-Klein modes. The effect of these modes is accounted for by the

term multiplied by b2 in (4.6), as an overall threshold correction. It is important to note

from (4.6) that the dominant contribution is of logarithmic dependence on k2 and this

is associated with the massless states only. Any power-like dependence of geff(k2) on the

13See Πhyper of (3.57).
14Early studies on this topic can be found in [35], but using instead an on-shell approach.
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momentum scale is suppressed by the compactification volume, κ ¿ 1, (i.e. the higher

derivative operator is also suppressed.) This is the case after the renormalisation of the

coupling h of the higher derivative gauge kinetic term, eqs. (3.61) and (4.1).

Eq. (4.6) can be used to study whether the low energy measurements of the couplings,

e.g. electroweak scale values of the couplings are consistent with a common value gtree,

regarded in this case as the “unified” coupling. The DR renormalisation scale µ is in this

picture regarded as the unification scale. Eq. (4.6) is the counterpart of that computed in

the (on-shell) string, in various models [17, 18, 16] (see also [35]). As we shall detail later,

our result in (4.6) is more in agreement with that of the 4D ZN orientifold models of type

I strings [16], rather than that of the heterotic string [17, 18].

We have so far considered the behaviour of geff(k2) at momentum scales k2 ¿ 1/R2
5,6

and its relation to the tree level coupling. At higher momentum scales, the higher derivative

operator becomes more important and one cannot neglect the presence of its coupling

h(k2), eq. (4.1). The regime k2 ∼ 1/R2
5,6 is that of dimensional crossover [15] and is the

most difficult to investigate technically. In this case eqs. (3.57), (3.58) provide a rather poor

approximation when used in eq. (4.4) to find geff . One must use instead the full expressions

of the functions J0, eqs. (3.55) and (3.56), integrated over x as in (3.53). These expressions

converge even in the case k2 ∼ 1/R2
5,6 and can be used to find the running of geff in this

regime. These expressions are somewhat complicated and this prevents an intuitive, simple

picture for this regime. In this case a full numerical approach based on (3.55), (3.56) may

be more suitable.

Finally, let us consider the case of even higher momenta, k2 À 1/R2
5,6. In this case we

find that the coupling h(k2) gives a substantial contribution to the running of the effective

gauge coupling. From eq. (4.4) together with eqs. (3.58) and (3.60), we obtain the following

result:

4π

g2
eff(k2)

≈ 4π

g2
tree

− 4π2k2R5R6

[
4π

h2
tree

+
b2

96π2
ln

µ2ξ2

k2

]
− C2(G)

2π
ln

µ2ξ1

k2
, if k2À 1

R2
5,6

(4.7)

where ξ2 = 4πe8/3−γE , ξ1 = 4πe2−γE are subtraction scheme dependent constants for the

divergences of the bulk and brane contributions respectively15. The scale µ is the familiar

renormalisation scale in the DR scheme, at which a “boundary” value of the coupling is

provided.

Eq. (4.7) describes the running of the effective gauge coupling well above the com-

pactification scales. The last term in eq. (4.7) is due to massless states (brane part only),

which contribute to the running. Further, the square bracket accounts for the contribution

coming from the running coefficient of the higher derivative term. Since the square bracket

involves k2R5R6 which essentially counts the number of excited Kaluza-Klein modes, we

obtain a power-like running with respect to the momentum scale, valid above the com-

pactification scales. Note, however, that the power dependence on k2 is controlled by the

parameter h2
tree which multiplies it (and is also affected by the presence of ln ξ2 which is a

15Remember that these are in the minimal subtraction scheme, i.e. only the poles in ε were cancelled by

gtree and htree.
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subtraction scheme dependent coefficient). We therefore need a deeper understanding of

this coefficient.

To this purpose, let us address the origin of the power-like term and explain what

ultimately controls it. To do so we rewrite eq. (4.4) as

4π

g2
eff(k2)

=
4π

g2
tree

− 4π

h2(k2)
(4π2k2R5R6) +

b2

4π
δ − C2(G)

2π
ln

µ2ξ1

k2
. (4.8)

This equation is valid at all values of k2, large or small relative to 1/R2
5,6, provided that

other higher dimension operators are negligible. Here δ is the integral over x as in (3.53)

of the part in J0 of either (3.55) or (3.56) which does not contain the first square bracket

in these two equations. If k2 ¿ 1/R2
5,6 then δ gives a log running given by the last term

in (3.57) while if k2 À 1/R2
5,6 then δ ≈ 0. With these values of δ and with the running

of h(k2) as in (4.1) one recovers the limiting cases of large and small momenta discussed

in (4.6) and (4.7).

The interpretation of the result in (4.8) is as follows: the coefficient of the power-

like term k2 R5R6 is ultimately controlled by the renormalised coupling h(k2) of the higher

derivative term in the action and by its running. In some works the notion ”power running”

refers to power-like (threshold) corrections in the UV cutoff regulator as opposed to the

power-like dependence with respect to the momentum scale that we obtained here, and

these are not to be confused. Our result above clarifies that the power running with

respect to the momentum scale is controlled by the one-loop corrected coupling of the

higher derivative gauge kinetic term in the action.

In general, in theories with higher derivative operators additional effects are present.

One should essentially start with the full action including at the tree level the higher

derivative gauge kinetic term, and quantise the theory in its presence. This is a rather

difficult problem. Further, in the presence of the higher derivative operator, the propagator

of the zero-mode gauge boson changes into a sum of two terms: one particle-like propagator

and one ghost-like propagator, respectively16:

G(k) =
−igµν

k2
(

k2

h2 + 1
g2

) = −ig2gµν

[
1

k2
− 1

k2 + h2

g2

]
. (4.9)

From the coefficient of each term, one can see that both particle and ghost have the same

coupling g to matter fields. Although the ghost pole is located around the 6D fundamental

scale, the ghost state may give an additional non-vanishing threshold correction to the

gauge coupling. Further, there are many other complications, specific to higher derivative

theories, such as unitarity violation, non-locality, etc, see [27]–[33], which made the study

of these theories less popular. Another difficulty that arises is that one must also take into

account the effect of brane-localised terms on the spectrum of the Kaluza-Klein modes [34],

not considered in this paper. Therefore, a detailed investigation of models with higher

derivative operators is far more complicated and beyond the purpose of the present work.

16See section 4 in [6] for a similar discussion for the case of a massive scalar field.
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To conclude, the higher derivative operator must be included to ensure the quantum

consistency of the model with extra dimensions, and therefore plays an important role in

the running of the effective gauge coupling. After the renormalisation of its coupling h

there is only a logarithmic dependence on the momentum scale of the 4D effective gauge

coupling geff(k2 ¿ 1/R2
5,6). At a higher momentum scale power-like terms in k2R5R6 < 1

are present. At even higher momentum scales k2 À 1/R2
5,6, the higher derivative operator

is important and its coupling h(k2) has a logarithmic running with respect to k2. In this

case the effective gauge coupling has, after renormalisation of h, a power-like dependence

on the momentum scale. The coefficient of this power-like term in momentum is equal

to the running coupling of the higher derivative operator. These findings provide a clear

explanation of the power-like running (with respect to the momentum scale) of the gauge

couplings in models with extra dimensions.

5. Higher derivative operators in other schemes and in string theory

It is interesting to investigate how higher derivative counterterms emerge in other regu-

larisation schemes and in string theory as well. This is important because their role in

ensuring the quantum consistency of the models was largely ignored in the literature. To

this purpose, we consider the effects of the massive Kaluza-Klein modes in a regularisation

with a momentum cutoff, i.e. the proper-time cutoff regularisation. Note that a proper-

time cutoff is less suitable as a regulator, since it breaks 4D Lorentz invariance and Ward

identities. Nevertheless, its use provides a more intuitive picture and will help our physical

understanding of the important role of higher derivative operators.

Let us introduce a cutoff regulator 1/Λ2 in Πhyper of (3.53) and consider this equation

for the massive mode contributions only, denoted Πhyper
m , i.e. we exclude the (0, 0) mode17.

One has

Πhyper
m (k2, 0) =

iπ2σ

(2π)4

∫ 1

0
dx

∑

n1,2∈Z

′

∫ ∞

1/Λ2

dt

t
e−π t [k2x(1−x)+n2

1/R2
5+n2

2/R2
6] (5.1)

=
iσ

(4π)2

{
Λ2R5R6 − ln

[
4πe−γE |η(i u)|4 u

(
Λ2R5R6

)]

−π

6
k2R5R6 ln

[
(4π)−1eγE Λ2R5R6u

−1
∣∣η(iu)

∣∣−4
]}

which is valid only if k2¿1/R2
5,6¿Λ2. The prime on the double sum marks the absence of

the (0, 0) mode. The ln Λ term in the square bracket is the counterpart of the −2/ε pole in

17The (0, 0) mode combines with the contribution of Πlocal to give 4D N =1 beta function, see footnote [12]
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the DR scheme18, first term in (5.2). The k2 ln Λ term corresponds the k2/ε term in the DR

scheme, associated with higher derivative operator. These divergences are cancelled by the

bulk kinetic term and the higher derivative operator, respectively. In addition we obtain a

quadratic divergence in the regulator Λ (5.1) which cannot appear in the DR scheme.

To see in more detail the need for a higher derivative operator in this regularisation,

remember that the momentum k2 may be regarded as an IR regulator, to ensure the

finiteness (at t → ∞) of Πhyper in (5.1) when the massless mode (n1, n2) = (0, 0) is

included. One notices that in the last term of (5.1) the limits k2 → 0 and Λ2 → ∞ do not

commute [14]:

[
k2 → 0,Λ2 → ∞

]
6= 0. (5.3)

We therefore have a rather troublesome UV-IR mixing term (UV divergent, IR finite)

meaning that the two sectors of the theory are not decoupled at the quantum level ! As we

recall from the comment following (3.57), a similar UV-IR mixing in the DR scheme was

cancelled by the renormalisation of a higher derivative counterterm. In a similar way, the

renormalisation of this operator cancels the log divergence in the last term of (5.1) so that it

enables the decoupling of the IR from the UV regime. Finally, the logarithmic and quadratic

divergences in the first two terms of (5.1) have to be subtracted by the gauge kinetic

counterterm at a renormalisation point. However, there remains a correction Λ2R5R6 with

arbitrary coefficient19, which may eventually be identified from a more fundamental theory,

e.g. from the field theory limit of the heterotic string [14, 36].

What does string theory say about these problems or about the need for higher deriva-

tive operators at the quantum level? To begin with, it is interesting to observe that in 4D

ZN orientifold models of type I strings [16], the one loop threshold corrections associated

with the massive N = 2 sector are exactly of the type in (4.6) after the tadpole cancel-

lation condition. Note that this condition “removes” any power-like dependence on the

string scale. This similarity of the results is interesting, although there does not seem to

exist a clear field theoretic understanding of this tadpole cancellation condition and what

that means for the higher derivative operator that we found. This also raises intriguing

issues such as whether the higher derivative counterterm that emerged and is relevant at

large radii may be related to the non-perturbative effects of D-branes.

Next, let us consider the case of the heterotic string toroidal orbifolds T 6/ZN , N even,

with “fixed” two-torus under the orbifold action. This brings one-loop string threshold

18In the DR scheme, the massive sector (this excludes the (0,0) mode) gives for k2 ¿ 1/R2
5,6 (eq. (3.57))

Πhyper
m (k2, 0) =

iπ2σµε

(2π)4−ε

Z 1

0

dx
X

n1,2∈Z

′

Z ∞

0

dt

t1−ε/2
e−π t [k2x(1−x)+n2

1
/R2

5
+n2

2
/R2

6
]

=
iσ

(4π)2



−2

ε
−ln

h

4πe−γE |η(i u)|4 u
`

4π2µ2R5R6

´

i

+
π

6
k2R5R6

»

−2

ε
− ln

h

πeγE µ2R5R6u
−1

˛

˛η(iR6/R5)
˛

˛

−4
i

–ff

. (5.2)

19One must not forget that Λ is actually a regulator and 100 × Λ is equally good a choice!
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corrections due to the N = 2 massive sector of Kaluza-Klein and winding modes [17, 18].

In the limit of large radii (in units α′) non-perturbative effects (world-sheet instanton

effects) are suppressed to give in the field theory regime:

Πhyper(k2 = 0, 0) ∼ − ln
[
4πe−γE |η(iu)|4 uT2

]
+

π

3
T2 + εIR ln α′, (5.4)

where T2 = R5R6/α
′; u is the usual complex structure (assuming an orthogonal fixed two-

torus). This result is similar to that in (5.1) for k2 = 0, as discussed in detail in [14, 36].

Although the string provides only an on-shell result (k2 = 0), the one-loop string

nevertheless requires an infrared regulator denoted εIR, which plays a role similar to a

small momentum k2 → 0. The last term in (5.4) vanishes when the infrared regulator in

string is removed εIR → 0, assuming α′ non-zero. However, α
′−1 ∼ M2

string is the string

scale, which is the counterpart to our UV momentum cutoff regulator Λ2 [36, 14]. One

immediately observes from the last term in (5.4) that the limit of removing the infrared

regulator εIR → 0 and the limit of large Mstring or α′ → 0 which is the effective field theory

regime, do not commute:
[
εIR → 0, α′ → 0

]
6= 0. (5.5)

This is the same problem we encountered in the proper-time cutoff regularisation scheme,

if we regard εIR as k2 → 0 and Mstring → ∞ as the counterpart of Λ2. Therefore there

is again a UV-IR mixing and a non-decoupling of the high scale physics i.e. of massive

modes from the 4D low energy limit [14], also encountered in the DR scheme (see comment

after (3.57)). The reason why such effects are usually not discussed in string theory is

ultimately related to the underlying on-shell approach, which “obscures” the need for

higher derivative counterterms. The last term in (5.4) is then a “remnant” of such effects,

and a reminder of this issue in the heterotic string. This non-decoupling of massive modes

in the low-energy (4D) raises questions on the consistency of attempts to match string

unification scale (in the presence of such thresholds) with MSSM-like unification scenarios.

This underlines the need for a study of the higher derivative operators in string theory20.

6. Conclusions

In this paper we performed a general analysis of the one-loop corrections to the self-

energy of gauge bosons in the framework of 6D N = 1 supersymmetric gauge theories

on orbifolds. We first considered an Abelian gauge theory using the Feynman diagram

approach in the component field formalism. The analysis was then extended to the case

of non-Abelian gauge theories on orbifolds. By employing the background field method

in higher dimensions, we established the general setup for the one-loop effective action for

gauge bosons and then applied it to the case of the orbifold T 2/
�

2. As a consequence, we

have shown that our component field approach is consistent with and complementary to

the superfield calculation [9, 10]. Moreover, the additional benefit of our component field

approach is that our findings can be easily used in a non-supersymmetric setup.

20For more details on this matter see [14] and section 3 in [11].
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In the case of Abelian theories on T 2/
�

2 we computed the divergent and finite parts of

the one-loop correction to the vacuum polarisation tensor. For the case of a bulk fermion it

was shown that only bulk corrections are present. The bulk corrections contained a diver-

gence which had to be cancelled by the introduction of a 6D higher derivative counterterm.

The loop corrections of a bulk scalar to the gauge boson self-energy were also computed

to show that there is a bulk (6D) higher derivative as well as brane localised (4D) gauge

kinetic counterterms. The former is absent in the limit when the two compact dimensions

collapse onto each other (similar for the bulk fermion), in agreement with the result that

there is no higher derivative counterterm from the gauge interactions at one loop in 5D21.

Combining the bulk scalar and fermion contributions, we showed that a hypermultiplet

only gives a bulk correction which requires a higher derivative counterterm, in agreement

with other recent studies [10].

The above one-loop results were generalised to the case of non-Abelian gauge theories

on the T 2/
�

2 orbifold and many of our results are expected to apply to other 6D orbifolds

as well. This generalisation was done by first constructing the effective action with a

background field method in higher dimensions, which was then applied to 6D orbifolds. To

this purpose, we introduced functional differentiations compatible with the orbifold actions

on the fields. We found that hypermultiplets provide only bulk corrections, while vector

multiplets bring in both bulk and boundary-localised corrections. The divergence of the

bulk correction is cancelled by a 6D higher derivative counterterm while the divergence of

the brane correction requires 4D boundary-localised gauge kinetic counterterms. Therefore,

after subtraction of divergences, there are unknown new parameters (couplings) coming

from these operators in the theory. The bulk correction has a non-perturbative origin

since we re-summed infinitely many individual (divergent) loop contributions of the bulk

modes. At the technical level this is related, in part, to a singularity (simple pole) of the

Hurwitz-Riemann Zeta function in the re-summed correction. We also computed the finite

part of the bulk correction which gives the momentum dependence of the self energy of the

gauge boson. After renormalisation of the higher derivative operator, the finite part of the

bulk correction has, at k2 ¿ 1/R2
5,6, a familiar, logarithmic dependence on k2 due to the

massless states only. There are in addition power-like terms (in k2R5R6 ¿ 1), strongly

suppressed in this regime, and due to integrated massive modes. At higher scales the finite

part contains power-like and exponentially suppressed terms in k2R5R6.

We then studied the behaviour of the effective 4D gauge coupling geff (k2), which was

defined as the coupling of the zero-mode gauge boson. After renormalisation of the higher

derivative operator coupling, we discussed in detail the running of the effective gauge

coupling with respect to the momentum scale. In the limit of momenta much smaller than

the compactification scales, the effective coupling runs logarithmically with the 4D N = 1

beta function and this low-scale running is induced by both bulk and brane terms.

We also analysed in detail the threshold corrections to the low energy gauge couplings,

due to massive Kaluza Klein modes with N = 2 beta function coefficient. The relation

of the low energy effective coupling to the tree level coupling shows that there is only

21Localised superpotential interactions do bring in one-loop higher derivative counterterms in 5D [5, 6].
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a logarithmic dependence of geff (k2) on the momentum scale, while power-like terms are

strongly suppressed in the regime k2R5R6 ¿ 1. This finding has potentially interesting

consequences for phenomenology, such as the unification of the gauge couplings. This is

the result after the renormalisation of the higher derivative coupling, which below com-

pactification scale is essentially constant (no running). It was observed that this result was

in agreement with that of the 4D ZN orientifolds of the type I string, where no power-like

terms are present in the one-loop threshold correction to the low-energy coupling.

At higher momentum scales, the higher derivative gauge kinetic term is more impor-

tant. After renormalisation, its coupling has a logarithmic running with respect to the

momentum scale. At k2 ∼ 1/R2
5,6 we provided technical formulae which allow the study

of the dimensional cross-over regime of the effective gauge coupling. At larger momen-

tum scales (k2 ≥ 1/R2
5,6), the initially negligible contribution of the higher derivative term

to the coupling geff becomes significant and starts to change the running of the effective

coupling with respect to momentum scale from the logarithmic one to the power-like one.

This behaviour was studied in detail. At all momentum scales the coefficient of the power-

like term is equal to the running coupling of the higher derivative gauge kinetic term.

This is an interesting finding which clarifies the physical meaning of power-like running (in

momentum) in models with extra dimensions.

Finally, the importance of the higher derivative operator was emphasised by showing

the need for them as counterterms in other regularisation schemes and in (heterotic) string

theory. In particular, it was shown that in these cases there is a UV-IR mixing (UV

divergent, IR finite) at the quantum level, due to ignoring the quantum role of the higher

derivative operator. In the (on-shell) heterotic string this can be seen from the fact that

the field theory limit of the one-loop correction from massive states does not commute

with the infrared regularisation of the one-loop string. This underlines the need for the

investigation of the role of higher derivative operators in string theory too.
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A. Notations and conventions

The metric has the signature gMN = diag(+ − − − −−); M,N = 0, 1, 2, 3, 5, 6 are six-

dimensional indices and µ, ν = 0, 1, 2, 3 are four-dimensional ones. The Clifford algebra in

six dimensions is characterised by

{ΓM ,ΓN} = 2gMN , (ΓM )T = −CΓMC−1, CT = C, C† = C−1. (A.1)
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An explicit representation for the 8 × 8 gamma-matrices is

Γµ =

(
0 γµ

γµ 0

)
, Γ5 =

(
0 γ5

γ5 0

)
, Γ6 =

(
0 −�4

�4 0

)
(A.2)

where γµ and γ5 are the four-dimensional gamma matrices, with

γ5 = −γ0γ1γ2γ3 = −i

(
�2 0

0 −�2

)
. (A.3)

In this basis, the six-dimensional chirality operator is diagonal:

Γ7 = Γ0Γ1Γ2Γ3Γ5Γ6 =

(
−�4 0

0 �4

)
. (A.4)

The charge conjugation is then

C =

(
0 −C5

C5 0

)
(A.5)

where C5 is the five-dimensional charge conjugation.

After imposing the chirality constraint in six dimensions, the gamma matrices acting

on right-handed or left-handed 6D spinors are reduced to the following 4 × 4 matrices,

respectively,

γM ≡ (γµ, γ5,−�4) and γ̄M ≡ (γµ, γ5, �4). (A.6)

In five dimensions, the gamma matrices Γa(a = 0, 1, 2, 3, 5) are given by

Γµ = γµ, Γ5 = γ5 (A.7)

satisfying the following relations:

(Γa)T = −C5Γ
aC−1

5 , CT
5 = −C5, C†

5 = C−1
5 . (A.8)

We note some useful formulae for the traces, used in the text

Tr[γµγν ] = 4gµν ,

Tr[γµγργνγσ] = 4(gµρgνσ − gµνgρσ + gµσgρν),

Tr[γµγργ5γνγσ] = −4iεµρνσ,

Tr[γµγνγσ] = Tr[γµγνγ5] = Tr[γµγνγνγ5] = 0. (A.9)

In the text we also used the following relations on Casimir operators for a representation

r (denoted G (N) in the case of the adjoint (fundamental) representation) of the group G:

tr(taGtbG) = C2(G)δab, tr(tar t
b
r) = C(r)δab. (A.10)

with C2(G) = C(G) = N , C(N) = 1/2 and C2(N) = (N2 − 1)/2N , in the case of SU(N).
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B. Propagators of bulk fields on orbifolds

We present in the following the propagators on the T 2/
�

2 orbifold used in the text. On

the orbifold T 2/
�

2, the positions z ≡ (x5, x6) in the extra dimensions are identified by

z → −z. For a bulk fermion, we impose the boundary conditions as

Pψ(x, z) ≡ iηfγ5ψ(x,−z) = ψ(x, z),

ψ(x, z) = ψ(x, z + 2πR5) = ψ(x, z + i2πR6) (B.1)

with ηf = ±1. Then, the fermion on the orbifold is written in terms of a fermion on T 2 as

ψ(x, z) =
1

2
(1 + P )χ(x, z)

=
1

2
(χ(x, z) + iηfγ5χ(x,−z)). (B.2)

By using the fermion propagator on T 2 given by

D(x, z;x′, z′) ≡ 〈χ(x, z)χ(x′, z′)〉 → D̃(p, ~p, ~p′) ≡ iδ~p,~p′

p/ + γ5p5 + p6
, (B.3)

we find the fermion propagator on the T 2/
�

2 orbifold as

Dηf
(x, z;x′, z′) ≡ 〈ψ(x, z)ψ(x′, z′)〉

→ D̃ηf
(p, ~p, ~p′) ≡ i

2

(
δ~p,~p′

p/ + γ5p5 ± p6
− ηf

δ~p,−~p′

p/ + γ5p5 ± p6
iγ5

)
. (B.4)

Here ± depends on the 6D chirality. Now we consider a bulk scalar field satisfying the

boundary conditions on the orbifold as

Pφ(x, z) ≡ ηsφ(x,−z) = φ(x, z),

φ(x, z) = φ(x, z + 2πR5) = φ(x, z + i2πR6) (B.5)

with ηs = ±1. Similarly to the fermion case, we can write down the scalar on the orbifold

in terms of a scalar on the covering space as

φ(x, z) =
1

2
(1 + P )ϕ(x, z)

=
1

2
(ϕ(x, z) + ηsϕ(x,−z)). (B.6)

Then, we obtain the scalar field propagator on the orbifold as

Gηs(x, z;x′, z′) ≡ 〈φ(x, z)φ(x′, z′)〉 → G̃ηs(p, ~p, ~p′) ≡ i

2

δ~p,~p′ + ηsδ~p,−~p′

p2 − p2
5 − p2

6

. (B.7)

C. Details of the one-loop vacuum polarisation to U(1) gauge bosons

We discuss in the following the detailed derivation of the one-loop vacuum polarisation of

U(1) gauge bosons due to the fermionic and bosonic contributions.
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C.1 A bulk fermion contribution

After introducing a Feynman parameter and shifting the integration momentum, we obtain

the fermionic correction (2.9) as

Πf
µν = −2g2δ~k,~k′µ

4−d
∑

~p′

∫ 1

0
dx

∫
ddp

(2π)d
1

(p2 − ∆)2

{
2pµpν − 2x(1 − x)kµkν

+gµν [−p2 + x(1 − x)k2 + ~p′ · (~p′ + ~k′)]
}

(C.1)

with

∆ ≡ −x(1 − x)(k2 − ~k′2) + (~p′ + x~k′)2. (C.2)

After re-writing the terms proportional to gµν as

−p2 + x(1 − x)k2 + ~p′ · (~p′ + ~k′) = −(p2 − ∆) + 2x(1 − x)(k2 − ~k′2)

+(1 − 2x)~k′ · (~p′ + x~k′), (C.3)

the correction becomes

Πf
µν = −2g2δ~k,~k′µ

4−d
∑

~p′

∫ 1

0
dx

∫
ddp

(2π)d

{[
2pµpν

(p2 − ∆)2
− gµν

p2 − ∆

]

+
1

(p2 − ∆)2

[
2x(1 − x)[(k2 − ~k′2)gµν − kµkν ] + (1 − 2x)~k′ · (~p′ + x~k′)gµν

]}
.(C.4)

By using ∫
ddp

(2π)d

[
2pµpν

(p2 − ∆)2
− gµν

p2 − ∆

]
= 0,

we end up with the result

Πf
µν = −2g2δ~k,~k′µ

4−d
∑

~p′

∫ 1

0
dx

∫
ddp

(2π)d
1

(p2 − ∆)2

×
(

2x(1 − x)[(k2 − ~k′2)gµν − kµkν ] + (1 − 2x)~k′ · (~p′ + x~k′)gµν

)
. (C.5)

used in the text, eq. (2.9).

C.2 A bulk scalar contribution

After using a Feynman parameter and a shift of integration momentum, the bosonic bulk

contribution (2.17) is given by

Πbulk
µν ≡ −1

2
g2δ~k,~k′µ

4−d
∑

~p′

∫
ddp

(2π)d
1

(p2 − ∆)2

{
− 4pµpν − (1 − 2x)2kµkν

+2gµν [p2 + (1 − x)2k2 − (~p′ + ~k′)2]
}

. (C.6)
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Rewriting the terms proportional to gµν as

p2 + (1 − x)2k2 − (~p′ + ~k′)2 = (p2 − ∆) + (1 − 3x + 2x2)(k2 − ~k′2)

+2(x − 1)~k′(~p′ + x~k′), (C.7)

the bulk correction becomes

Πbulk
µν = −1

2
g2δ~k,~k′µ

4−d
∑

~p′

∫ 1

0
dx

∫
ddp

(2π)d

{
− 2

[
2pµpν

(p2 − ∆)2
− gµν

p2 − ∆

]

+
1

(p2 − ∆)2

[
2(1 − 3x + 2x2)(k2 − ~k′2)gµν − (1 − 2x)2kµkν

+ 4(x − 1)~k′ · (~p′ + x~k′)gµν

]}
. (C.8)

Then, after 4D momentum integration with eq. (C.5), the first two terms cancel. Now

observe that
(1 − 2x)(k2 − ~k′2)

(p2 − ∆)2
= − ∂

∂x

(
1

p2 − ∆

)
+

2~k′ · (~p′ + x~k′)

(p2 − ∆)2
.

Then from the x-integration

∫ 1

0
dx

∂

∂x

(
1

p2 − ∆

)
=

1

p2 − (~p′ + ~k′)2
− 1

p2 − ~p′2
,

we note that the surface term for the Feynman parameter vanishes after the Kaluza-Klein

summation with the discrete shift in ~p′. Therefore, we obtain the correction as

Πbulk
µν = −1

2
g2δ~k,~k′µ

4−d
∑

~p′

∫ 1

0
dx

∫
ddp

(2π)d
1

(p2 − ∆)2

×
(

(1 − 2x)2[(k2 − ~k′2)gµν − kµkν ] + 2(2x − 1)~k′(~p′ + x~k′)gµν

)
. (C.9)

used in the text, eq. (2.18).

D. Results and evaluation of series J0,1 for 6D orbifolds

We evaluate (with c ≥ 0, a1,2 > 0, 0 ≤ c1,2 < 1):

Jv[c; c1, c2]≡ Γ[ε/2]
∑

n1,n2∈Z

(n1 + c1)
v
[
π[c + a1(n1 + c1)

2 + a2(n2 + c2)
2]

]−ε/2

=
∑

n1,n2∈Z

(n1 + c1)
v

∫ ∞

0

dt

t1−ε/2
e−π t [c+a1(n1+c1)2+a2(n2+c2)2], v=0, 1 . . . ; (D.1)

This expression was used in the text for v = 0 and v = 1 in eqs. (2.10), (2.11), (2.12), (2.22),

(2.23), (3.51). In these eqs we assumed ai = 1/R2
i+4, i = 1, 2, c1 = xR5k

′
5, c2 = xR6k

′
6 and
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c = x(1−x)(k2 +~k
′2) in Euclidean metric. Since we can always shift ci by an integer, only

their fractional part will enter the final result.

The final value of J0 was given in [6] but in the text we also need to evaluate J1

however. Since the proof is similar, and to be general, we present the generic steps to

evaluate Jv. The counterpart of Jv with a factor (n2 + c2)
v in front of the integral is

obtained from the replacements c1 ↔ c2 and a1↔a2. Most important for us is to identify

the poles of Jv, (to find the counterterms) but we also evaluate the finite part which require

us compute the O(ε) term in the double sum in the first line in (D.1). Notation used:

γ(n1) ≡
√

z(n1)√
a2

− i c2; z(n1) ≡ c + a1(n1 + c1)
2, u ≡

√
a1/a2 (D.2)

Keeping the sum over n1 fixed, we re-sum (see (E.4)) over n2, so that

∑

n1,2∈Z

e−πt [a2(n2+c2)2+a1(n1+c1)2] =
∑

n2∈Z

e−π t [a2(n2+c2)2+a1c21] +

′∑

n1∈Z

∑

n2∈Z

e−π t [a2(n2+c2)2+a1(n1+c1)2]

=
∑

n2∈Z

e−π t [a2(n2+c2)2+a1c21] +
1√
t a2

′∑

n1∈Z

e−πt a1 (n1+c1)2

+
1√
t a2

′∑

n1∈Z

′∑

ñ2∈Z

e
−

πñ2
2

t a2
−πt a1 (n1+c1)2+2πiñ2c2 (D.3)

The first term has n1 =0, the last two have n1 6=0. Then

Jv = K(v)
1 + K(v)

2 + K(v)
3 (D.4)

K(v)
i , are obtained by integrating term-wise (D.3) with appropriate coefficients and extra

n1 dependence, see eqs. (D.5), (D.6), (D.18) below. Their evaluation follows:

Calculation of K(v)
1 :

K(v)
1 ≡ cv

1

∑

n2∈Z

∫ ∞

0

dt

t1−ε/2
e−π t [a2(n2+c2)2+a1c21]−πct = −cv

1 ln
∣∣∣2 sin(πiγ(0))

∣∣∣
2

(D.5)

which was computed by first performing a re-summation (E.4) over n2, and then used the

integral representation (E.1) of the Bessel function K 1
2

its expression (E.2), and (D.2).

Calculation of K(v)
2 : Here we distinguish two cases: if 0 < c/a1 < 1 one has:

K(v)
2 ≡ 1√

a2

′∑

n1∈Z

(n1 + c1)
v

∫ ∞

0

dt

t3/2−ε/2
e−πt a1 (n1+c1)2−πt c

=
π

1
2
− ε

2

√
a2

Γ[−1/2 + ε/2]

′∑

n1∈Z

(n1 + c1)
v
[
c + a1(n1 + c1)

2
] 1

2
− ε

2

=
(πa1)

1
2
− ε

2√
a2

∑

k≥0

[−c

a1

]k Γ[k−1/2+ε/2]

k!

[
ζ[2k−q, 1+c1]+(−1)vζ[2k−q, 1−c1]

]∣∣∣∣
q=v+1−ε

(D.6)
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where, in the second line above we used the binomial expansion

[a(n + c)2 + q]−s = a−s
∑

k≥0

Γ[k + s]

k ! Γ[s]

[−q

a

]k

[(n + c)2]−s−k (D.7)

We employed the Hurwitz Zeta function, ζ[z, a] =
∑

n≥0(a + n)−z, a 6= 0,−1,−2, . . . for

Re(z) > 1. One has ζ[z, 1] = ζ[z] where ζ[z] is the Riemann zeta function. Hurwitz zeta-

function has one singularity (simple pole) at z = 1. Therefore, in the last line in (D.6),

under the sum, a singularity in Zeta functions is present for those k with 2k − v − 1 = 1.

When present, this singularity is taken care of by the presence of ε in the argument of Zeta

functions. The presence of such singularity depends on the values of the parameter v. We

therefore distinguish below two situations:

(i) v = −2, 0, 2, 4, 6, 8, . . . . when such a singularity is present in the term with k = v/2+ 1.

(ii) when v is different from these values.

In case (ii) the result is already that given by (D.6) where one (is allowed to) sets ε = 0

since the series does not develop any singularity and converges rapidly under our initial

assumption for the ratio 0 ≤ c/a1 < 1. For case (i), when a singularity develops, we isolate

the corresponding term in the series from the rest, by using

ζ[1 + ε, 1 ± c1] =
1

ε
− ψ(1 ± c1) + O(ε)

Γ[v + 1/2 + ε/2] = Γ[v + 1/2]
(
1 + (ε/2)ψ(v + 1/2)

)
+ O(ε2)

xε = 1 + ε ln x + O(ε) (D.8)

with ψ(z) = (d/dz) ln Γ[z] the Digamma function. In the remaining terms in the series we

are allowed to take ε → 0. We find that for v = −2, 0, 2, 4, 6, . . .

K(v)
2 =

√
πu

∑

k≥0

Γ[k−1/2]

k!

[−c

a1

]k[
ζ[2k−v−1, 1+c1]+ζ[2k−v−1, 1−c1]

]∣∣∣∣
k 6=v/2+1

(D.9)

−√
π u

Γ[v/2+1/2]

(v/2+1)!

[−c

a1

]v/2+1[−2

ε
+ ln

[
πa1e

−ψ(v/2+1/2)+ψ(c1)+ψ(−c1)
]]

, u ≡
√

a1/a2

where the series converges quickly if |c/a1| < 1, which justifies our (stronger) initial as-

sumption 0 ≤ c/a1 < 1. This concludes the discussion for case (i).

Replacing now v = 0, 1, 2 in the above result, one obtains the appropriate expressions

for K(0), K(1) and K(2), that we need for our purposes. One has

K(0)
2 =

π c√
a1a2

[−2

ε
+ ln

[
4π a1 eγE+ψ(c1)+ψ(−c1)

]]
+ 2π u

(1

6
+ c2

1

)

+
√

π u
∑

p≥1

Γ[p+1/2]

(p + 1)!

[−c

a1

]p+1(
ζ[2p+1, 1+c1]+ζ[2p+1, 1−c1]

)
, u ≡

[
a1

a2

] 1
2

(D.10)
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and

K(1)
2 =

√
π u

∑

p≥0

Γ[p + 3/2]

(p + 2)!

[−c

a1

]p+2(
ζ[2p + 2, 1 + c1] − ζ[2p + 2, 1 − c1]

)

+ 2π u c1

[1

3
(1 + 2c2

1) +
c

a1

]
, u ≡

√
a1/a2 (D.11)

Finally

K(2)
2 =πu

[−1

30
+c2

1 + c4
1

]
+

π c√
a1a2

[1

6
+c2

1

]
− π c2

4a1
√

a1a2

[−2

ε
+ln

[
4πa1 eγE−2+ψ(c1)+ψ(−c1)

]]

+
√

π u
∑

p>0

Γ[p + 3/2]

(p + 2)!

[−c

a1

]p+2(
ζ[2p + 1, 1 + c1] + ζ[2p + 1, 1 − c1]

)
, (D.12)

In the remaining case 1 ≤ c/a1 we examine separately the cases v = 0, 1, 2. One shows:

K(0)
2 ≡

′∑

n1∈Z

1√
a2

∫ ∞

0

dt

t3/2−ε/2
e−πta1(n1+c1)2−π t c (D.13)

=
πc√
a1a2

[−2

ε
+ln(π c eγE−1)

]
+4

[
c

a2

] 1
2 ∑

ñ1>0

cos(2πñ1c1)

ñ1
K1

(
2πñ1

√
c

a1

)
+

2π√
a2

(c + a1c
2
1)

1
2

This expression was obtained by firstly adding and subtracting a zero mode, which enabled

us to then re-sum (see (E.4)) the series over n1 ∈ Z. We then used the integral represen-

tation of the modified Bessel functions K1 (E.1). The pole present is that of the initial

“missing” zero mode. The presence of the Bessel function K1[z] which is exponentially

suppressed (E.2) ensures that the result above converges rapidly in this case too.

One also has, for v = 1 (again 1 ≤ c/a1):

K(1)
2 ≡ 1√

a1

′∑

n1∈Z

(n1 + c1)

∫ ∞

0

dt

t3/2−ε/2
e−πta1(n1+c1)2−πt c (D.14)

= − 1

2a1π

1√
a2

∂

∂c1

′∑

n1∈Z

∫ ∞

0

dt

t5/2−ε/2
e−πta1(n1+c1)2−π t c

= − 1

2a1π

1√
a2

∂

∂c1

{
− π2c2

2
√

a1

[−2

ε
+ ln

(
π c eγE−3/2

)]

+ 4 c
√

a1

∑

ñ1>0

cos(2πñ1c1)

ñ2
1

K2(sñ1) −
4π2

3
(c + a1c

2
1)

3
2

}

=
4c√
a1a2

∑

ñ1>0

sin(2πñ1c1)

ñ1
K2(sñ1)+

2πc1√
a2

(c + a1c1)
1
2 , sñ1 ≡2πñ1

√
c/a1 (D.15)

where the series converges rapidly, due to exponential suppression of the Bessel function

K2. To evaluate the integral over t with denominator t5/2−ε/2 one uses steps identical to
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those for K(0)
2 with the only difference that we encountered an integral representation of

K2 rather than K1.

Finally, for the remaining case v = 2 (1 ≤ c/a1):

K(2)
2 ≡ 1√

a1

′∑

n1∈Z

(n1 + c1)
2

∫ ∞

0

dt

t3/2−ε/2
e−πta1(n1+c1)2−π t c (D.16)

= − 1

π

1√
a2

∂

∂a1

′∑

n1∈Z

∫ ∞

0

dt

t5/2−ε/2
e−πta1(n1+c1)2−π t c = − 1

π

1√
a2

∂

∂a1

{−4π2

3
(c + a1c

2
1)

3
2

− π2c2

2
√

a1

[−2

ε
+ ln

(
π c eγE− 3

2
)]

− 4π2

3
(c + a1c

2
1)

3
2 + 4c

√
a1

∑

ñ1>0

cos(2πñ1c1)

ñ2
1

K2(sñ1)

}

=
−π c2

4a1
√

a1a2

[−2

ε
+ln

(
π c eγE− 3

2

)]
− 2c

π
√

a1a2

∑

ñ1>0

cos(2πñ1c1)

ñ2
1

[
3K2(sñ1)+sñ1K1(sñ1)

]

+
2πc2

1√
a2

(c + a1c
2
1)

1
2 , sñ1 ≡ 2πñ1

√
c/a1; c/a1 ≥ 1. (D.17)

with intermediate steps similar to those for K(1)
2 .

Calculation of K(v)
3 : Finally, we evaluate the remaining:

K(v)
3 ≡ 1√

a2

′∑

n1∈Z

′∑

ñ2∈Z

(n1 + c1)
v

∫ ∞

0

dt

t3/2−ε/2
e
−

πñ2
2

t a2
−πt a1 (n1+c1)2+2πiñ2 c2−π t c

(D.18)

=
1√
a2

′∑

n1∈Z

∑

ñ2>0

(n1 + c1)
v 1

ñ2
e−2πñ2 γ(n1) + c.c.

= −
′∑

n1∈Z

(n1 + c1)
v ln

∣∣∣1 − e−2πγ(n1)
∣∣∣
2

= −
∑

n1∈Z

(n1 + c1)
v ln

∣∣∣1 − e−2πγ(n1)
∣∣∣
2
− 2πcv

1√
a2

(c + a1c
2
1)

1
2 + cv

1 ln
∣∣∣2 sin(πiγ(0))

∣∣∣
2
(D.19)

using the notations in eq. (D.2). In the last line we re-wrote the result in a form which

makes explicit the cancellations which occur in the sum of Jv = K(v)
1 + K(v)

2 + K(v)
3 .

The steps in the calculation of K(v)
3 are similar to those so far: we used the integral

representation of the Bessel function K1/2 eq. (E.1), then its explicit expression (E.2) and

then the series expansion of the logarithm. The result for K(v)
3 is valid for real v, not only

for our cases of interest v = 0, 1, 2, regardless of the value c/a1 (larger/smaller than 1).

We can now add the intermediate eqs to obtain J0,1,2 using eq. (D.4). J0 quoted below

in (D.20) and (D.21) is found from eqs. (D.5), (D.10), (D.13), (D.19). Further, J1 quoted

in (D.23) and (D.24) is found using eqs. (D.5), (D.11),(D.15), (D.19). Finally J2 quoted
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in (D.25) and (D.26) is obtained by using (D.5), (D.12), (D.17), (D.19). In conclusion we

have the following:

Results: If 0 ≤ c/a1 < 1 and with notations (D.2), γ(n1) ≡
√

z(n1)/
√

a2 − i c2; and

z(n1) ≡ c+a1(n1+c1)
2, u ≡

√
a1/a2, sñ1 ≡ 2πñ1

√
c/a1, γE = 0.577216 . . . we obtain (in

the text a1 = 1/R2
5, a2 = 1/R2

6

J0[c; c1, c2] =
πc√
a1a2

[−2

ε
+ln

[
4π a1 eγE+ψ(c1)+ψ(−c1)

]]
+ 2π u

[
1

6
+ c2

1 −
(
c/a1 + c2

1

) 1
2

]

−
∑

n1∈Z

ln
∣∣∣1−e−2π γ(n1)

∣∣∣
2
+
√

π u
∑

p≥1

Γ[p+1/2]

(p+1)!

[−c

a1

]p+1(
ζ[2p+1, 1+c1]+ζ[2p+1, 1−c1]

)
(D.20)

while if we have c/a1 > 1, then

J0[c; c1, c2] =
πc√
a1a2

[−2

ε
+ln

[
π c eγE−1

]]
−

∑

n1∈Z

ln
∣∣∣1−e−2π γ(n1)

∣∣∣
2

+
4
√

c√
a2

∑

ñ1>0

cos(2πñ1 c1)

ñ1
K1(sñ1) (D.21)

The pole structure is the same for both cases; if c/a1 > 1 and except the first square

bracket, no power-like terms in c are present (the last one being suppressed due to K1).

Finally, we quote here a limiting case for the behaviour of the function J0

J0[c ¿ 1; 0, 0] =
πc√
a1a2

[−2

ε
+ ln

[
4πe−γE a1

∣∣η(i
√

a1/a2)
∣∣4

]]

− ln
[
4π2 |η(i

√
a1/a2)|4 a−1

2

]
− ln c (D.22)

and this was used in the text in eq. (3.57).

Further, if 0 ≤ c/a1 < 1

J1[c, c1, c2] = 2πc1 u

[
c

a1
− (c/a1 + c2

1)
1
2 +

1

3
(1 + 2c2

1)

]
−

∑

n1∈Z

(n1 + c1) ln
∣∣∣1 − e−2πγn1

∣∣∣
2

+
√

π u
∑

p≥0

Γ(p + 3/2)

(p + 2)!

[−c

a1

]p+2(
ζ[2p + 2, 1 + c1] − ζ[2p + 2, 1 − c1]

)
(D.23)

while if c/a1 > 1, then

J1[c, c1, c2] =−
∑

n1∈Z

(n1+c1) ln
∣∣∣1 − e−2πγ(n1)

∣∣∣
2
+

4 c√
a1a2

∑

ñ1>0

sin(2πñ1c1)

ñ1
K2(sñ1) (D.24)
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where sñ1 ≡ 2πñ1

√
c/a1. Note that J1 has no poles in ε, unlike the case of J0,2. K1 is

exponentially suppressed at large argument.

Finally, if 0 ≤ c/a1 < 1

J2[c, c1, c2] = − πc2

4 a1
√

a1a2

[−2

ε
+ ln

[
4π a1 eγE+ψ(c1)+ψ(−c1)−2

]]

− π u

[
1

30
− c

6a1
−c2

1

(
1 − (c/a1 + c2

1)
1
2

)2
]
−

∑

n1∈Z

(n1 + c1)
2 ln

∣∣∣1 − e−2πγ(n1)
∣∣∣
2

+
√

π u
∑

p≥1

Γ[p+3/2]

(p+2)!

[−c

a1

]p+2(
ζ[2p+1, 1+c1]+ζ[2p+1, 1−c1]

)
. (D.25)

while if c/a1 > 1 then:

J2[c, c1, c2] = − πc2

4a1
√

a1a2

[−2

ε
+ ln

[
π c eγE−3/2

]]
−

∑

n1∈Z

(n1 + c1)
2 ln

∣∣∣1 − e2πγ(n1)
∣∣∣
2

− 2 c

π
√

a1a2

∑

ñ1>0

cos(2π ñ1c1)

ñ2
1

[
3K2(sñ1) + sñ1K1(sñ1)

]
, (D.26)

where sñ1 ≡ 2πñ1

√
c/a1.

The series with zeta functions converge under the assumption 0 ≤ c/a1 < 1. The pres-

ence of Bessel functions K1,2 (see (E.2)) which are exponentially suppressed with respect to

their argument (larger than unity) ensures a rapid convergence of the corresponding series.

Similar expressions exist for Iv = Jv|c1↔c2;a1↔a2 ; and are obtained from those above with

replacements a1 ↔ a2, c1 ↔ c2.

E. Definitions of special functions

The modified Bessel functions Kn(z) used above have the integral representation/definition:

∫ ∞

0
dxxν−1e−bxp−ax−p

=
2

p

[
a

b

] ν
2p

K ν
p
(2
√

a b), Re(b), Re(a) > 0 (E.1)

with

K1[x] = e−x

√
π

2x

[
1 +

3

8x
− 15

128x2
+ O(1/x3)

]

K2[x] = e−x

√
π

2x

[
1 +

15

8x
+

105

128

1

x2
+ O(1/x3)

]

K 1
2
[x] = e−x

√
π

2x

K 3
2
[x] = e−x

√
π

2x

[
1 +

1

x

]
(E.2)
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The definition of the poly-logarithm function used above

Liσ(x) =
∑

x≥1

xn

nσ
(E.3)

The one-dimensional Poisson re-summation used in the appendix:

∑

n∈Z

e−πA(n+σ)2 =
1√
A

∑

ñ∈Z

e−πA−1ñ2+2iπñσ (E.4)

The Hurwitz Zeta function used in this paper is defined as

ζ[z, a] =
∑

n≥0

(a + n)−z (E.5)

where a 6= 0,−1,−2, . . . for Re(z) > 1. One has ζ[z, 1] = ζ[z] where ζ[z] is the Riemann

zeta function. Hurwitz zeta-function has one singularity (simple pole) at z = 1.

We also used the Dedekind function

η(τ) ≡ eπiτ/12
∏

n≥1

(1 − e2iπτ n),

η(−1/τ) =
√
−i τ η(τ), η(τ + 1) = eiπ/12η(τ). (E.6)
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